acceleration times speed
You cannot. Force is mass times acceleration. You have neither.
This is imposible to calculate. In order to find acceleration, knowlege of at least 3 of these variables must be given: initial speed, final speed, distance, and time.
The distance travelled by an object in a given time is given by:Distance = Speed * TimeAlternatively for an object that is accelerating:Distance = (Speed of object before acceleration is applied * Time) + (0.5 * Acceleration * Time squared)If the object is accelerating from speed zero, the first set of brackets is irrelevant.Also, if the object is falling to the ground, acceleration = 9.81
Power is equal to Force times velocity; P=Fv. You are given the 'speed', which I assume to be velocity. You also have acceleration. In order to find F, you need first to find the mass, which you can calculate from the weight, Fg, by dividing by the acceleration due to gravity, 9.8. You then have the mass. From here, multiply mass times acceleration times the velocity.
Distance = (1/2 of acceleration) x (time squared)You can change this around to solve it for acceleration or time.(Time squared) = (distance)/(half of acceleration)Time = the square root of [ (2 x distance)/(acceleration) ]Be careful . . .This is only true if the distance and the speed are both zero when the time begins.
You cannot. Force is mass times acceleration. You have neither.
To find acceleration when given distance and time, you can use the formula: acceleration 2 (distance / time2). Simply divide the distance by the square of the time to calculate the acceleration.
This is imposible to calculate. In order to find acceleration, knowlege of at least 3 of these variables must be given: initial speed, final speed, distance, and time.
The distance travelled by an object in a given time is given by:Distance = Speed * TimeAlternatively for an object that is accelerating:Distance = (Speed of object before acceleration is applied * Time) + (0.5 * Acceleration * Time squared)If the object is accelerating from speed zero, the first set of brackets is irrelevant.Also, if the object is falling to the ground, acceleration = 9.81
Find out the time using speed and acceleration, (time=speed/acceleration) and then use it to find out uniform velocity. From that find out uniform acceleration. (as uniform acceleration is equal changes of velocity over equal intervals of time)
You can find the final speed by using the formula: final speed = initial velocity + (acceleration * time). Plug in the given values for initial velocity, acceleration, and time into the formula to calculate the final speed.
Power is equal to Force times velocity; P=Fv. You are given the 'speed', which I assume to be velocity. You also have acceleration. In order to find F, you need first to find the mass, which you can calculate from the weight, Fg, by dividing by the acceleration due to gravity, 9.8. You then have the mass. From here, multiply mass times acceleration times the velocity.
The speed can be found by multiplying the acceleration by the time. So, speed = acceleration x time.
You can find the final speed using the formula: final speed = initial speed + (acceleration * time). Simply plug in the values for initial speed, acceleration, and time to calculate the final speed of the object.
Distance = (1/2 of acceleration) x (time squared)You can change this around to solve it for acceleration or time.(Time squared) = (distance)/(half of acceleration)Time = the square root of [ (2 x distance)/(acceleration) ]Be careful . . .This is only true if the distance and the speed are both zero when the time begins.
To find the distance traveled by an object with a given acceleration and initial velocity, you can use the formula: distance (initial velocity time) (0.5 acceleration time2). This formula takes into account the initial velocity, acceleration, and time the object has been moving to calculate the total distance traveled.
Divide the distance by the time; the quotient is speed.