Displaced water method.
You don't have to find the volume ! If gas is put into a closed container, it fills it. The volume of gas in a one liter tank is one liter.
To find the amount of gas, you can measure the volume of gas using a gas meter or gauge. Additionally, you can calculate the amount of gas by multiplying the volume of gas by its density or by using the ideal gas law equation.
You don't
To find the density of a gas, you can use the formula: density mass/volume. First, measure the mass of the gas using a scale. Then, measure the volume of the gas using a graduated cylinder or other appropriate tool. Finally, divide the mass by the volume to calculate the density of the gas.
To find the molecular mass if specific volume is given, you can use the ideal gas law. The ideal gas law relates the pressure, volume, temperature, and the number of moles of gas to the gas constant. By rearranging the ideal gas law equation and solving for the molecular mass, you can determine the molecular mass of the gas.
To calculate the density of a gas, you need to know the gas's mass and volume. The formula for density is density mass/volume. Measure the mass of the gas using a scale and the volume using a graduated cylinder or other measuring tool. Then, divide the mass by the volume to find the density of the gas.
Charles found that when the temperature of a gas is increased at constant pressure, its volume increases. When the temperature of a gas is decreased at constant pressure, its volume decreases.
You can find molar volume by dividing the volume of a gas by the number of moles of gas present. The equation to calculate molar volume is V = nRT/P, where V is volume, n is the number of moles, R is the ideal gas constant, T is temperature, and P is pressure.
To determine the density of a gas, you can use the formula: Density (mass of gas) / (volume of gas). Measure the mass of the gas using a scale and the volume using a graduated cylinder or other measuring tool. Then, divide the mass by the volume to find the density.
One still has to know the pressure and the amount(moles) of that gas, not which gas is concerned.
As the volume of a given gas sample is dependent on its temperature and pressure; to find a volume of any gas which does exist, the temperature and the pressure of the system/vessel should be given directly or could be calculated.
To find the volume of gas, you can use the ideal gas law equation: PV = nRT. Plug in the values for pressure (5.3 ATM), temperature (227°C converted to Kelvin by adding 273), moles of gas (0.8), and the ideal gas constant (0.0821 L·atm/mol·K). Solve for V (volume) to find the volume of the container needed to store 0.8 moles of argon gas at those conditions.