answersLogoWhite

0

I want to solve the following equation:

X''(t)=(`ρ`*Cd*(Vz-Wz)*(Vx-Wx))/Bc

Y''(t)+(`ρ`*Cd*(Vy-Wy)*(Vx-Wx))/Bc

Z''(t)+((`ρ`*Cd*(Vz-Wz)^2)/Bc)+g

I don't have values of any variable. i need general solution. I am using Mupad, matlab please help me. Thanks

User Avatar

Wiki User

11y ago

What else can I help you with?

Related Questions

What is the difference between a first order and a second order differential equation?

A first order differential equation involves only the first derivative of the unknown function, while a second order differential equation involves the second derivative as well.


What is second order differential equation?

The highest order of derivative is 2. There will be a second derivative {f''(x) or d2y/dx} in the equation.


What is the general solution of a differential equation?

It is the solution of a differential equation without there being any restrictions on the variables (No boundary conditions are given). Presence of arbitrary constants indicates a general solution, the number of arbitrary constants depending on the order of the differential equation.


What is an Airy equation?

An Airy equation is an equation in mathematics, the simplest second-order linear differential equation with a turning point.


What is Exact ordinary differential equation?

exact differential equation, is a type of differential equation that can be solved directly with out the use of any other special techniques in the subject. A first order differential equation is called exact differential equation ,if it is the result of a simple differentiation. A exact differential equation the general form P(x,y) y'+Q(x,y)=0Differential equation is a mathematical equation. These equation have some fractions and variables with its derivatives.


What is the Order of a differential equation?

The order of a differential equation is a highest order of derivative in a differential equation. For example, let us assume a differential expression like this. d2y/dx2 + (dy/dx)3 + 8 = 0 In this differential equation, we are seeing highest derivative (d2y/dx2) and also seeing the highest power i.e 3 but it is power of lower derivative dy/dx. According to the definition of differential equation, we should not consider highest power as order but should consider the highest derivative's power i.e 2 as order of the differential equation. Therefore, the order of the differential equation is second order.


Definition of quadratic equation related to differential equation?

A quadratic equation is a polynomial equation of the form ( ax^2 + bx + c = 0 ), where ( a ), ( b ), and ( c ) are constants, and ( a \neq 0 ). In the context of differential equations, a second-order linear differential equation can resemble a quadratic equation when expressed in terms of its characteristic polynomial, particularly in the case of constant coefficients. The roots of this polynomial, which can be real or complex, determine the behavior of the solutions to the differential equation. Thus, while a quadratic equation itself is not a differential equation, it plays a significant role in solving second-order linear differential equations.


What does the second order differential equation represent graphically?

actually it represents the concavity or convexity of a curve


What is differential equation in mathematics?

It is an equation containing differentials or derivatives, there are situations when variables increase or decrease at certain rates. A direct relationshin between the variables can be found if the differential equation can be solved. Solving differential equations involves an integration process:first order dy _____ which introduces one constant arbitrary dx And secnd order which introduces two arbitrary constant arbitraries 2 d y ______ 2 d x dx


Collocation method for second order differential equation?

The collocation method for solving second-order differential equations involves transforming the differential equation into a system of algebraic equations by selecting a set of discrete points (collocation points) within the domain. The solution is approximated using a linear combination of basis functions, typically polynomial, and the coefficients are determined by enforcing the differential equation at the chosen collocation points. This approach allows for greater flexibility in handling complex boundary conditions and non-linear problems. The resulting system is then solved using numerical techniques to obtain an approximate solution to the original differential equation.


Why euler method for solving first and second order differential equation is not preferred when compared with rungeekutta method?

"http://wiki.answers.com/Q/Why_euler_method_for_solving_first_and_second_order_differential_equation_is_not_preferred_when_compared_with_rungeekutta_method"


What are the degrees of differential equation?

The degree of a differential equation is the POWER of the derivative of the highest order. Using f' to denote df/fx, f'' to denote d2f/dx2 (I hate this browser!!!), and so on, an equation of the form (f'')^2 + (f')^3 - x^4 = 17 is of second degree.