The product of (wavelength) times (frequency) is the speed.
When working with waves ... or even just talking about them ... (frequency) = (speed) divided by (wavelength) (wavelength) = (speed) divided by (frequency) (frequency) times (wavelength) = (speed)
The speed of a wave is equal to the wavelength divided by the frequency (speed = wavelength/frequency). So if the frequency of the wave increases, the wavelength will decrease.
The speed of a wave is equal to the wavelength divided by the frequency (speed = wavelength/frequency). So if the frequency of the wave increases, the wavelength will decrease.
The speed of a wave is equal to the wavelength divided by the frequency (speed = wavelength/frequency). So if the frequency of the wave increases, the wavelength will decrease.
The speed of a wave is equal to the wavelength divided by the frequency (speed = wavelength/frequency). So if the frequency of the wave increases, the wavelength will decrease.
The speed of a wave is equal to the wavelength divided by the frequency (speed = wavelength/frequency). So if the frequency of the wave increases, the wavelength will decrease.
The speed of a wave is equal to the wavelength divided by the frequency (speed = wavelength/frequency). So if the frequency of the wave increases, the wavelength will decrease.
Period = (1) divided by (frequency) = (wavelength) divided by (speed)Frequency = (1) divided by (period) = (speed) divided by (period)Speed = (wavelength) times (frequency) = (wavelength) divided by (period)Wavelength = (speed) divided by (frequency) = (speed) times (period)
That depends on the speed of the waves. If you are considering waves at the same speed, then yes, shorter wavelength equals higher frequency. The formula is: frequency = speed / wavelength or wavelength = speed / frequency From this you can clearly see, that if speed remains constant, then when wavelength decreases the frequency will increase and vice versa.
Speed = Wavelength X Frequency
Speed = Wavelength X Frequency
Periodic waves are characterized by a frequency, a wavelength, and by their speed.