Just one. Or, two if you count (1, p) and (p, 1) as being different.
23
In the prime factorisation of the number, each factor must appear an even number of times.In the prime factorisation of the number, each factor must appear an even number of times.In the prime factorisation of the number, each factor must appear an even number of times.In the prime factorisation of the number, each factor must appear an even number of times.
The number of factors of a given number corresponds to the different ways that number can be expressed as a product of two integers, which represents the possible dimensions of rectangular arrays. For instance, if a number has six factors, it can be arranged into rectangular arrays of dimensions that multiply to that number, such as 1x6, 2x3, and 3x2. Each unique pair of factors gives a distinct arrangement, illustrating the relationship between factors and rectangular arrays. Thus, the total number of factors directly determines the number of unique rectangular configurations possible for that number.
13
Prime numbers have as factors the number 1 and their own number. Example: 37 is a prime number because its only factors are "1" and "37". If the prime number had further factors, it would no longer be prime.
The Number of factors, (That is the number of pairs, such as 2= 1x2, 2x1), is equal to the number of rectangular arrays which can be made for each composite number. As such, the number of factors in the number 9 is 3, (1,3,9), and the number of rectangular arrays is also three (1x9, 9x1,3x3). Hope this helps!
Each factor pair is an array.
Records are distinguished from arrays by the fact that their number of fields is typically fixed, each field has a name, and that each field may have a different type.
I assume you mean that you have a number of rows, and that not all rows have the same number of "cells". Yes, in Java a two-dimensional array is implemented as an array of arrays (each item in the top-level array is, in itself, an array); a 3-dimensional array is an array of arrays of arrays, etc.; and there is no rule stating that all secondary (etc.) arrays must have the same number of elements.
23
identify two composite numbers that each have 8 as a factor
In the prime factorisation of the number, each factor must appear an even number of times.In the prime factorisation of the number, each factor must appear an even number of times.In the prime factorisation of the number, each factor must appear an even number of times.In the prime factorisation of the number, each factor must appear an even number of times.
The number of factors of a given number corresponds to the different ways that number can be expressed as a product of two integers, which represents the possible dimensions of rectangular arrays. For instance, if a number has six factors, it can be arranged into rectangular arrays of dimensions that multiply to that number, such as 1x6, 2x3, and 3x2. Each unique pair of factors gives a distinct arrangement, illustrating the relationship between factors and rectangular arrays. Thus, the total number of factors directly determines the number of unique rectangular configurations possible for that number.
Each number only has one prime factorization.
Each composite number has its own unique prime factorization.
Neither nine nor sixteen are prime numbers. They are relatively prime to each other.
You factor the number into prime factors, dividing each prime out.