grapes
The imaginary axis is used in the definition of the complex numbers. Complex numbers are used in many fields in engineering, in particular - electric engineering, aerodynamics, acoustics etc.
Isaac Newton
Physics (e.g., quantum mechanics, relativity, other subfields) makes use of imaginary numbers. "Complex analysis" (i.e., calculus that includes imaginary numbers) can also be used to evaluate difficult integrals and to perform other mathematical tricks. Engineering, especially Electrical Engineering makes use of complex and imaginary numbers to simplify analysis of some circuits and waveforms.
peenutbudr
The real numbers together with the imaginary numbers form a sort of vector. What these complex numbers (complex means the combination of real and imaginary numbers) represent depends on the specific situation. Just as there are situations where it doesn't make sense to use negative numbers, or fractional numbers, in many common situations it doesn't make sense to use complex numbers. In an electrical circuit (specifically, AC), the real numbers might represent resistance, while the imaginary number represent reactance - and voltages and currents are also represented by complex numbers, with the angle of the complex number representing how much one quantity is ahead or behind another quantity (the "phase angle"). In quantum mechanics, the complex numbers might not represent anything (perhaps they don't, I am not sure...), but they are useful for calculations.
Any jobs that require a B.S.All jobs/careers involve the use of numbers.
Mathematics is beautiful in itself. Back in the 1700s and later, mathematicians studied "imaginary" numbers (numbers that involve a factor of the square root of -1) knowing that they didn't describe anything "real", the way "real numbers" do. But when beauty can be melded to practicality, things get REALLY interesting. It turns out that you can use imaginary numbers and "complex numbers" (which have a "real" component and an "imaginary" component) to describe the way radiation and electromagnetic fields behave.
The 16th century Italian mathematician, Gerolamo Cardano was the first to use imaginary and complex numbers in his work on cubic equations.
Engineering (especially electrical engineering), Math, Physics mainly.
you would use complex and imaginary numbers in your daily life if you become a mathematician, electrical engineer, quantam mechanic, etc. otherwise, you would not use use them at all except in algebra 2, pre-calc, calculus....i hope that helped a little bit.
There are many careers that use trigonometry:EngineersArchitectsArtistsPhysicistsAstronomersDraftsmanCraftsmanPharmacistFinancial Analyst