Ignoring rotations, there are 3 distinct solutions.
There are only four different configurations.
Four.
Three.
To find the number of rectangular prisms that can be formed with 8 unit cubes, we need to consider the dimensions of the prisms (length, width, and height) such that their product equals 8. The possible sets of dimensions are (1, 1, 8), (1, 2, 4), and (2, 2, 2). When accounting for different arrangements of these dimensions, there are a total of 6 distinct rectangular prisms: (1, 1, 8), (1, 2, 4), (2, 1, 4), (2, 2, 2), and their permutations.
4
There are only four different configurations.
Four.
Three.
The answer depends on the number. Note that the question does not require the solids to be in the form of cubiods (rectangular prisms).
Oh, what a happy little question! With 18 unit cubes, you can create different rectangular prisms by arranging the cubes in various ways. Remember to explore different combinations and see how many unique rectangular prisms you can discover. Just have fun and let your imagination guide you on this creative journey!
6 i think
Just one, although the orientation of the prism might vary.
2 cubes = 4 prisms
4
13
4
To determine the number of rectangular prisms that can be formed using exactly 36 cubes, we need to find all the possible combinations of dimensions that can multiply to give 36. The factors of 36 are 1, 2, 3, 4, 6, 9, 12, 18, and 36. Each factor corresponds to a unique rectangular prism. Therefore, there are 9 different rectangular prisms that can be formed using exactly 36 cubes.