Be notified when an answer is posted
B. The sampling error
Standard error is an indicator of the expected level of variation from the predicted outcome in an estimate. So even though the mean is mostly likely the outcome, the actual range the outcome could call into is a region which is measured by the standard error.
It is using in estimates and polling.
A "Good" estimator is the one which provides an estimate with the following qualities:Unbiasedness: An estimate is said to be an unbiased estimate of a given parameter when the expected value of that estimator can be shown to be equal to the parameter being estimated. For example, the mean of a sample is an unbiased estimate of the mean of the population from which the sample was drawn. Unbiasedness is a good quality for an estimate, since, in such a case, using weighted average of several estimates provides a better estimate than each one of those estimates. Therefore, unbiasedness allows us to upgrade our estimates. For example, if your estimates of the population mean µ are say, 10, and 11.2 from two independent samples of sizes 20, and 30 respectively, then a better estimate of the population mean µ based on both samples is [20 (10) + 30 (11.2)] (20 + 30) = 10.75.Consistency: The standard deviation of an estimate is called the standard error of that estimate. The larger the standard error the more error in your estimate. The standard deviation of an estimate is a commonly used index of the error entailed in estimating a population parameter based on the information in a random sample of size n from the entire population.An estimator is said to be "consistent" if increasing the sample size produces an estimate with smaller standard error. Therefore, your estimate is "consistent" with the sample size. That is, spending more money to obtain a larger sample produces a better estimate.Efficiency: An efficient estimate is one which has the smallest standard error among all unbiased estimators.The "best" estimator is the one which is the closest to the population parameter being estimated.
A "Good" estimator is the one which provides an estimate with the following qualities:Unbiasedness: An estimate is said to be an unbiased estimate of a given parameter when the expected value of that estimator can be shown to be equal to the parameter being estimated. For example, the mean of a sample is an unbiased estimate of the mean of the population from which the sample was drawn. Unbiasedness is a good quality for an estimate, since, in such a case, using weighted average of several estimates provides a better estimate than each one of those estimates. Therefore, unbiasedness allows us to upgrade our estimates. For example, if your estimates of the population mean µ are say, 10, and 11.2 from two independent samples of sizes 20, and 30 respectively, then a better estimate of the population mean µ based on both samples is [20 (10) + 30 (11.2)] (20 + 30) = 10.75.Consistency: The standard deviation of an estimate is called the standard error of that estimate. The larger the standard error the more error in your estimate. The standard deviation of an estimate is a commonly used index of the error entailed in estimating a population parameter based on the information in a random sample of size n from the entire population.An estimator is said to be "consistent" if increasing the sample size produces an estimate with smaller standard error. Therefore, your estimate is "consistent" with the sample size. That is, spending more money to obtain a larger sample produces a better estimate.Efficiency: An efficient estimate is one which has the smallest standard error among all unbiased estimators.The "best" estimator is the one which is the closest to the population parameter being estimated.
The greatest possible error is 0.005
We try to estimate the greatest possible extent of such errors, so that we can give a margin of error for our results.
An estimate for the mean of a set of observations is just that - an estimate. Another set of observations will give a different estimates. These estimates for the mean will have a distribution which will have a standard error. If you have two sub-populations, the mean of each sub-population will have a standards error and the se of the difference between the means is a measure of the variability of the estimates of the difference.A typical school work example: the heights of men and of women. There will be a mean height for men, Hm, with a se for men's heights and a mean height for women, Hw, with its own se. The difference in mean heights is Hm - Hw and which will have an estimated se.
The greatest possible error is 0.0005
what is the greatest possible error of 350mi
The answer depends on the measurement precision. If the figure is correct to the last decimal, the greatest possible error is 0.0005 oz. However, the figure could refer to 11 oz + 32 drachms. If accurate to the nearest drachm, the greatest possible error is 0.00195 oz.
That's actually not possible. If one of the parents have a B gene genotype, then this could be possible. Or there could be a lab error. I recommend to get it checked again.