No. By definition, f(-x) = f(x) so that it is many-to-one.
An even function is one where f(x) = f(-x) For cosine, cos(x) = cos(-x), thus cosine is an even function.
An even function cannot have an inverse.If f(x) = y, then if f is an even function, f(-x) = y.Then, if g were the inverse function of f, g(y) would be x as well as -x.But a one-to-many relationship is not a function.
If you know that a function is even (or odd), it may simplify the analysis of the function, for several purposes. One example is the calculation of definite integrals: for an odd function, the integral of a function from (-x) to (x) (note 1) is zero; for an even function, this integral is twice the integral of the function from (0) to (x). Note 1: That is, the area under the function; for negative values, this "area" is taken as negative) is
An even function is symmetric about the y-axis. If a function is symmetric about the origin, it is odd.
we have 2 kidneys in our body if one of them is removed the other kidney left can function well.
Basically, a knowledge of even and odd functions can simplify certain calculations. One place where they frequently appear is when using trigonometric functions - for example, the sine function is odd, while the cosine function is even.
An even function is a function that creates symmetry across the y-axis. An odd function is a function that creates origin symmetry.
The function already exists in PHP and is even called max(); Otherwise use: function max ($one, $two) { return $one > $two ? $one : $two; }
Yes And even in the same program!
both
I find it convenient to express other trigonometric functions in terms of sine and cosine - that tends to simplify things. The secant function is even because it is the reciprocal of the cosine function, which is even. The tangent function is the sine divided by the cosine - an odd function divided by an even function. Therefore it is odd. The cosecant is the reciprocal of an odd function, so it is naturally also an odd function.
The only way a function can be both even and odd is for it to ignore the input, i.e. for it to be a constant function. e.g. f(x)=4 is both even and odd. An even function is one where f(x)=f(-x), and an odd one is where -f(x)=f(-x). This doesn't make sense. Let's analyze. For a function to be even, f(-x)=f(x). For a function to be odd, f(-x)=-f(x). In this case, f(x)=4, and f(-x)=4. As such, for the first part of the even-odd definition, we have 4=4, which is true, making the function even. However, for the second part of it, we have 4=-4 (f(-x)=4, but -f(x)=-4), which is not true. Therefore constant functions are even because f(-x)=f(x), but not odd because f(-x)!=-f(x).