yes frequency = 1/radiation
Electromagnetic radiation E= hf is characterized by its frequency, f.
Energy = hf where h is Planck's Constant and f is the radiation frequency.
The frequency of radiation refers to the number of wave cycles that pass a given point in one second. It is closely related to the energy of the radiation, with higher frequency radiation having higher energy levels. Radiation with higher frequency can be more harmful to living organisms.
Energy and frequency of electromagnetic radiation are directly proportional. This means that as the frequency of radiation increases, so does its energy. This relationship is described by the equation E = h * f, where E is energy, h is Planck's constant, and f is frequency.
For any wave, (wavelength) times (frequency) = (speed of propagation).For electromagnetic waves, (wavelength) times (frequency) = (speed of 'light')
The energy of electromagnetic radiation is directly proportional to its frequency. This relationship is described by Planck's equation: E = hν, where E is the energy, h is Planck's constant, and ν is the frequency. This means that as the frequency of electromagnetic radiation increases, so does its energy.
In the electromagnetic spectrum Gamma radiation has the highest frequency.
The energy of one photon is given by its frequency X planck's constant Its frequency is given by the speed of light divided by the wavelength.
The minimum frequency of radiation emitted by a radioactive nucleus is proportional to its energy. This frequency is related to the energy by the equation E = hf, where E is the energy, h is Planck's constant, and f is the frequency. Therefore, the minimum frequency of radiation emitted by a radioactive nucleus depends on the specific energy released during the radioactive decay process.
The frequency of infrared radiation ranges from about 300 GHz to 400 THz.
The speed of electromagnetic radiation (light) in a vacuum is a constant, independent of frequency or wavelength. However in a medium (e.g. glass, water, air, diamond) it is no longer a constant, allowing the colors to be separated into a spectrum.
The frequency of incident radiation can be varied by changing the energy level of the source emitting the radiation. For example, in the case of electromagnetic radiation like light, increasing the energy of the source (such as a higher voltage in the case of X-rays) will result in higher frequency radiation. Similarly, for radioactive decay processes, the frequency of emitted radiation can be controlled by manipulating the radioactive material's properties.