Q: Is the product of two rational number irrational or rational?

Write your answer...

Submit

Still have questions?

Continue Learning about Math & Arithmetic

The product of two rational numbers is always a rational number.

The simplest example (of infinitely many) is probably the squareroot of two multiplied by itself equals two. Take any rational number, say 4.177 and divide it with any irrational number, say the square root of 13, and you will get a new irrational number. The product of your two irrational numbers now make a rational number.

Next to any rational number is an irrational number, but next to an irrational number can be either a rational number or an irrational number, but it is infinitely more likely to be an irrational number (as between any two rational numbers are an infinity of irrational numbers).

no x² is the product of 2 rational numbers in this case the same 2 numbers x and x The product of two rational numbers is always rational.

They are called conjugates.

Related questions

The product of two rational numbers is always a rational number.

The question is nonsense because the product of two rational numbers is never irrational.

The product of 2 rationals must be rational. The product of a rational and an irrational is irrational (unless the rational is 0) The product of two irrationals can be either rational or irrational.

The product of two rational numbers, as in this example, is always RATIONAL.However, if you mean 10 x pi, pi is irrational; the product of a rational and an irrational number is ALWAYS IRRATIONAL, except for the special case in which the rational number is zero.

No, and I can prove it: -- The product of two rational numbers is always a rational number. -- If the two numbers happen to be the same number, then it's the square root of their product. -- Remember ... the product of two rational numbers is always a rational number. -- So the square of a rational number is always a rational number. -- So the square root of an irrational number can't be a rational number (because its square would be rational etc.).

No. The square root of two is an irrational number. If you multiply the square root of two by the square root of two, you get two which is a rational number.

The simplest example (of infinitely many) is probably the squareroot of two multiplied by itself equals two. Take any rational number, say 4.177 and divide it with any irrational number, say the square root of 13, and you will get a new irrational number. The product of your two irrational numbers now make a rational number.

You get a product which can be rational or irrational.

No. The product of sqrt(2) and sqrt(2) is 2, a rational number. Consider surds of the form a+sqrt(b) where a and b are rational but sqrt(b) is irrational. The surd has a conjugate pair which is a - sqrt(b). Both these are irrational, but their product is a2 - b, which is rational.

Next to any rational number is an irrational number, but next to an irrational number can be either a rational number or an irrational number, but it is infinitely more likely to be an irrational number (as between any two rational numbers are an infinity of irrational numbers).

no x² is the product of 2 rational numbers in this case the same 2 numbers x and x The product of two rational numbers is always rational.

They are called conjugates.