answersLogoWhite

0

it doesn't define direction of velocity

User Avatar

Wiki User

12y ago

What else can I help you with?

Related Questions

What is the proof of the work-energy theorem?

The work-energy theorem states that the work done on an object is equal to the change in its kinetic energy. Mathematically, this can be expressed as W KE, where W is the work done on the object and KE is the change in its kinetic energy. The proof of this theorem involves applying the principles of work and energy conservation in physics.


If work done on an object is equal to object's change in kinetic energy this the state of?

If the work done on an object is equal to the object's change in kinetic energy, then the object is in a state of work-energy theorem. This theorem states that the work done on an object is equal to the change in its kinetic energy.


Does the work-kinetic energy theorem hold for both positive and negative work?

Yes, the work-kinetic energy theorem holds for both positive and negative work. Positive work increases the kinetic energy of an object, while negative work decreases it. The theorem states that the net work done on an object is equal to the change in its kinetic energy.


What is an equation for work energy theorem?

The work-energy theorem states that the work done on an object is equal to the change in its kinetic energy. Mathematically, the equation can be written as W = ΔKE, where W is the work done on the object and ΔKE is the change in its kinetic energy.


What are the key concepts and principles of the work-energy theorem reviewed in our study material?

The key concepts and principles of the work-energy theorem include the idea that the work done on an object is equal to the change in its kinetic energy. This theorem helps us understand how energy is transferred and transformed in physical systems. It also highlights the relationship between work, energy, and the motion of objects.


What does the work-kinetic energy theorem mean in words?

The work-energy theorem states that the work done on an object is equal to the change in its kinetic energy. This means that if work is done on an object, it will either speed up or slow down depending on the direction of the work.


What is the significance of the work-ke theorem in the field of physics?

The work-energy theorem is significant in physics because it relates the work done on an object to its change in energy. This theorem helps in understanding how energy is transferred and transformed in various physical systems, making it a fundamental concept in the study of mechanics and dynamics.


How does the work kinetic energy theorem explain the relationship between the work done on an object and its resulting change in kinetic energy?

The work-kinetic energy theorem states that the work done on an object is equal to the change in its kinetic energy. This means that when work is done on an object, it results in a change in the object's kinetic energy.


How does the work kinetic energy theorem relate to the transfer of energy in a system?

The work-energy theorem states that the work done on an object is equal to the change in its kinetic energy. This means that when work is done on an object, it results in a change in its kinetic energy. In a system, energy can be transferred through work, causing changes in the kinetic energy of the objects within the system.


What is the relationship between work and kinetic energy as described by the work-kinetic energy theorem?

The work-kinetic energy theorem states that the work done on an object is equal to the change in its kinetic energy. This means that when work is done on an object, it results in a change in its kinetic energy. In other words, the work done on an object is directly related to the change in its kinetic energy.


What is the significance of the work-energy theorem in the context of physics?

The work-energy theorem in physics states that the work done on an object is equal to the change in its kinetic energy. This theorem is significant because it provides a way to analyze and understand the relationship between work, energy, and motion in physical systems. It helps in predicting and explaining the behavior of objects in motion and is a fundamental concept in the study of mechanics.


What is the importance of work-energy theorem?

The work-energy theorem states that the work done on an object is equal to the change in its kinetic energy. This theorem is important because it allows us to analyze and predict the motion of objects by considering the work done on them. It provides a powerful tool for understanding and solving problems in mechanics.