No it never works.
You cannot.
the Pythagorean theorem is the following:a2 + b2 = c2So for example:then you will solve for whatever side you are searching forbut for this theorem to work it must be a right triangle! and "c" must be the side across from the right angle
pythagoras made the famous pythagoras theorem and many more....
Pythagoras invented the Pythagorean Theorem of course, but it only can work for right triangles, not any other triangle. The formula is- A2+B2=C2
If the work done on an object is equal to the object's change in kinetic energy, then the object is in a state of work-energy theorem. This theorem states that the work done on an object is equal to the change in its kinetic energy.
Yes, the work-kinetic energy theorem holds for both positive and negative work. Positive work increases the kinetic energy of an object, while negative work decreases it. The theorem states that the net work done on an object is equal to the change in its kinetic energy.
The work-energy theorem states that the work done on an object is equal to the change in its kinetic energy. Mathematically, the equation can be written as W = ΔKE, where W is the work done on the object and ΔKE is the change in its kinetic energy.
The work-energy theorem states that the work done on an object is equal to the change in its kinetic energy. This means that if work is done on an object, it will either speed up or slow down depending on the direction of the work.
The work-energy theorem states that the work done on an object is equal to the change in its kinetic energy. This theorem is important because it allows us to analyze and predict the motion of objects by considering the work done on them. It provides a powerful tool for understanding and solving problems in mechanics.
The work-energy theorem states that the work done on an object is equal to the change in its kinetic energy. Therefore, if you do 100 J of work on a cart with no friction, its kinetic energy will increase by the same amount, resulting in a total kinetic energy increase of 100 J.
Kinetic energy gained by an object is directly related to the work done on it. Work done on an object transfers energy to it, increasing its kinetic energy. The work-energy theorem states that the work done on an object is equal to the change in its kinetic energy.
Yes, some work is converted into heat due to the friction.
To find the speed using the work-energy theorem, you need to equate the work done on an object to its change in kinetic energy. The equation is: Work = ΔKE = 1/2(mv² - mu²), where m is the object's mass, v is the final velocity, and u is the initial velocity. Solve for v to find the final speed.
Work and energy are related in the sense that work is the process of transferring energy from one system to another. When work is done on an object, energy is transferred to that object, either increasing its kinetic energy (if the work is done against friction) or potential energy. The work-energy theorem states that the work done on an object is equal to the change in its kinetic energy.
Work input and work output are related by the principle of energy conservation, as described by the work-energy theorem. It states that the work input equals the sum of the change in kinetic energy and change in potential energy of an object, which is also equal to the work output. This relationship helps understand how energy is transferred and transformed in various processes.
The work done by the net force acting on a body results change only in its kinetic energy.The work done by the net force acting on a body results change only in its kinetic energy.