true
true
True... Good luck with Apex :)
An equator is a circle that divides the surface of an object into two equal halves. The term is usually used to explain the circle that divides a plane,t like the Earth, in to two hemispheres.
surface_area_sphere = 4 × π × radius_sphere² = π × (2 × radius_sphere)² area_circle = π × radius_circle² These are equal when: π × radius_circle² = π × (2 × radius_sphere)² → radius_circle² = (2 × radius_sphere)² → radius_circle = 2 × radius_sphere As the given circle has a radius of 14 units and the given sphere has a radius of 7 units, and 14 = 2 × 7, it is true that the area of a circle with a radius of 14 units is the same as the surface area of a sphere with a radius of 7 units.
The surface area of the sphere with the radius doubled is 200 units2.---> Confirmed
It is the radius of a circle or of a sphere
160
The radius of curvature of a spherical surface is the radius of the sphere from which the surface is derived. It is defined as the distance from the center of the sphere to the surface at any point. For a perfect sphere, the radius of curvature is constant and equal to the sphere's radius. This concept is crucial in optics and geometry, as it helps determine how light rays behave when they encounter curved surfaces.
The line segment described is known as a diameter. It connects two points on the circumference of a circle or the surface of a sphere and passes through the center point, effectively dividing the circle or sphere into two equal halves. The length of the diameter is twice the radius of the circle or sphere.
The surface area of a sphere is equal to 4 x Pi x radius2
The radius of a sphere is equal distance from the center of the sphere to all points within the sphere.
A small circle, in geometry, refers to a circle with a radius that is smaller than a larger reference circle, often used in discussions about spherical geometry or in the context of navigation and mapping. It is defined as the intersection of a sphere with a plane that does not pass through the center of the sphere. Unlike great circles, which divide a sphere into two equal halves, small circles do not represent the shortest path between points on the sphere's surface.