The explicit formula for a sequence is a formula that allows you to find the nth term of the sequence directly without having to find all the preceding terms. To find the explicit formula for a sequence, you need to identify the pattern or rule that governs the sequence. This can involve looking at the differences between consecutive terms, the ratios of consecutive terms, or any other mathematical relationship that exists within the sequence. Once you have identified the pattern, you can use it to create a formula that will generate any term in the sequence based on its position (n) in the sequence.
56
It is often possible to find an explicit formula that gives the same answer as a given recursive formula - and vice versa. I don't think you can always find an explicit formula that gives the same answer.
Find the formula of it.
A quadratic sequence is when the difference between two terms changes each step. To find the formula for a quadratic sequence, one must first find the difference between the consecutive terms. Then a second difference must be found by finding the difference between the first consecutive differences.
You find the first 20 prime numbers and add them together. There is no formula for generating a sequence of prime numbers and so none for the series of their sums.You find the first 20 prime numbers and add them together. There is no formula for generating a sequence of prime numbers and so none for the series of their sums.You find the first 20 prime numbers and add them together. There is no formula for generating a sequence of prime numbers and so none for the series of their sums.You find the first 20 prime numbers and add them together. There is no formula for generating a sequence of prime numbers and so none for the series of their sums.
The formula to find the sum of a geometric sequence is adding a + ar + ar2 + ar3 + ar4. The sum, to n terms, is given byS(n) = a*(1 - r^n)/(1 - r) or, equivalently, a*(r^n - 1)/(r - 1)
The formula LIS stands for "Longest Increasing Subsequence." It is used to find the length of the longest subsequence of a given sequence that is strictly increasing.
Finding the nth term is much simpler than it seems. For example, say you had the sequence: 1,4,7,10,13,16 Sequence 1 First we find the difference between the numbers. 1 (3) 4 (3) 7 (3) 10 (3) 13 (3) 16 The difference is the same: 3. So the start of are formula will be 3n. If it was 3n, the sequence would be 3,6,9,12,15,18 Sequence 2 But this is not our sequence. Notice that each number on sequence 2 is 2 more than sequence 1. this means are final formula will be: 3n+1 Test it out, it works!
There is no formula that will sum n even numbers without further qualifications: for example, n even numbers in a sequence.
The formula used to find the 99th term in a sequence is a^n = a^1 + (n-1)d. a^1 is the first term, n is the term number we wish to find, and d is the common difference. In order to find d, the pattern in the sequence must be determined. If the sequence begins 1,4,7,10..., then d=3 because there is a difference of 3 between each number. d can be quite simple or more complicated as it can be a function or formula in of itself. However, in the example, a^1=1, n=99, and d=3. The formula then reads a^99 = 1 + (99-1)3. Therefore, a^99 = 295.
Depends on the sequence. There may be a formula for the Nth term in which case it is easy. Or the value may depend on some combination of previous terms (as in the Fibbonaci series).