**Project Heads**

*Jens Eisert, Klaus-Robert Müller*

**Project Members**

Jens Eisert (FU), Frederik Wilde (FU), Klaus-Robert Müller (TU)

**Project Duration**

01.01.2019 – 31.12.2021

**Located at**

FU Berlin

**Project Webpages**

**Selected Publications
**

- Scalably learning quantum many-body Hamiltonians from dynamical data, F. Wilde, A. Kshetrimayum, R. Sweke, I. Roth, J. Eisert, (in preparation)
- Single-component gradient rules for variational quantum algorithms, T. Hubregtsen, F. Wilde, S. Qasim, J. Eisert, arxiv:2106.01388 (2021)
- Stochastic gradient descent for hybrid quantum-classical optimization, R. Sweke, F. Wilde, J. Meyer, M. Schuld, P. K. Fährmann, B. Meynard-Piganeau, J. Eisert,
*Quantum*4, 314 (2020).

- Expressive power of tensor-network factorizations for probabilistic modeling, with applications from hidden Markov models to quantum machine learning, I. Glasser, R. Sweke, N. Pancotti, J. Eisert, J. I. Cirac, Advances in Neural Information Processing Systems 32,
*Proceedings of the NeurIPS 2019 Conference*(2019).

- Tensor network approaches for learning non-linear dynamical laws, A. Goeßmann, M. Götte, I. Roth, R. Sweke, G. Kutyniok, J. Eisert, arXiv:2002.12388 (2020),
*Proceedings of the NeurIPS 2020 Conference*(2020).

- Quantum certification and benchmarking, J. Eisert, D. Hangleiter, N. Walk, I. Roth, D. Markham, R. Parekh, U. Chabaud, E. Kashefi, arXiv:1910.06343,
*Nature Reviews*Phys. 2, 382-390 (2020).

- A variational toolbox for quantum multi-parameter estimation, J. Jakob Meyer, J. Borregaard, J. Eisert,
*Nature Partner Journal Quantum Information*7, 89 (2021). -
The effect of data encoding on the expressive power of variational quantum machine learning models, M. Schuld, R. Sweke, J. J. Meyer,
*Physical Review A*103, 032430 (2021).

- Unifying machine learning and quantum chemistry – a deep neural network for molecular wavefunctions, K. T. Schütt, M. Gastegger, A. Tkatchenko, K. -R. Müller, R. J. Maurer,
*Nature Communication*10, 5024 (2019).

**Selected Pictures
**

Please insert any kind of pictures (photos, diagramms, simulations, graphics) related to the project in the above right field (Image with Text), by choosing the green plus image on top of the text editor. (You will be directed to the media library where you can add new files.)

(We need pictures for a lot of purposes in different contexts, like posters, scientific reports, flyers, website,…

Please upload pictures that might be just nice to look at, illustrate, explain or summarize your work.)

As Title in the above form please add a copyright.

And please give a short description of the picture and the context in the above textbox.

Don’t forget to press the “Save changes” button at the bottom of the box.

If you want to add more pictures, please use the “clone”-button at the right top of the above grey box.