answersLogoWhite

0

What are the applications of det of a matrix?

Updated: 8/18/2019
User Avatar

Wiki User

14y ago

Best Answer

it is used to find the inverse of the matrix.

inverse(A)= (adj A)/ mod det A

User Avatar

Wiki User

14y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: What are the applications of det of a matrix?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Related questions

What is the possible determinant of unitary matrix?

|Det(U)| = 1 so that Det(U) = ±1


Prove that a matrix a is singular if and only if it has a zero eigenvalue?

Recall that if a matrix is singular, it's determinant is zero. Let our nxn matrix be called A and let k stand for the eigenvalue. To find eigenvalues we solve the equation det(A-kI)=0for k, where I is the nxn identity matrix. (<==) Assume that k=0 is an eigenvalue. Notice that if we plug zero into this equation for k, we just get det(A)=0. This means the matrix is singluar. (==>) Assume that det(A)=0. Then as stated above we need to find solutions of the equation det(A-kI)=0. Notice that k=0 is a solution since det(A-(0)I) = det(A) which we already know is zero. Thus zero is an eigenvalue.


How do you determine determinant of matrix using matlab?

d = det(x);


To find discriminant of a matrix?

Well, Im not sure if this is true for all matrices of all sizes, but for a 2x2 square matrix the discriminant is... dis(A) = tr(A)^2 - 4 det(A) The discriminant of matrix A is equal to the square of the trace of matrix A, minus four times the determinant of matrix A. I know this to be true for all 2x2 square matrice, but I have never seen any statement one way or the other for larger matrices. Thus, for matrix A = [ a, b; c, d ] tr(A) = a+d det(A) = ad-bc tr(A)^2 = a^2 + 2ad + d^2 4 det(A) = 4ad - 4bc dis(A) = a^2 - 2ad + 4bc + d^2


What are good speech topics for matric?

The use of matrix in various industrial applications is a good speech topic for matrix. The use of matrix in our day to day lives is another good speech matrix.


What has the author KE CHEN written?

K.E CHEN has written: 'MATRIX PRECONDITIONING TECHNIQUES AND APPLICATIONS'


Matrix applications in electronics and communication?

Matrices are mainly used in network analysis to solve problems based on mesh and nodal analysis. Their applications are also used in network topology to solve problems based on tie set, cut set and incidence matrix.


Program calculate determinant of matrices in matlab?

d = det(X) returns the determinant of the square matrix X. If X contains only integer entries, the result d is also an integer. The determinant is computed from the triangular factors obtained by Gaussian elimination [L,U] = lu(A) s = det(L) % This is always +1 or -1 det(A) = s*prod(diag(U)) The statement A = [1 2 3; 4 5 6; 7 8 9] produces A = 1 2 3 4 5 6 7 8 9 This happens to be a singular matrix, so d = det(A) produces d = 0. Changing A(3,3) with A(3,3) = 0 turns A into a nonsingular matrix. Now d = det(A) produces d = 27. For more info visit http://www.mathworks.com/access/helpdesk/help/techdoc/ref/det.html


Where you use matrix?

There are very many applications but one of the more common one for elementary users is for solving simultaneous equations.


What is the formula for determinant of a 3x3 matrix?

To answer this question, let me establish an example 3 x 3 matrix named "A": A= [a b c] [d e f] [g h i] The formula I will give you, called co-factor expansion, works for any size square matrix, so you could use it to find the determinant of a 2 x 2, 3 x 3, all the way up to an n x n matrix. To find the determinant, pick any row or column in the matrix. It will make your work much easier if you choose a row or column that has many zeroes in it. A general notation that is often used to find the determinant of a matrix is to use straight bars in place of the brackets surrounding the matrix contents. So, if I was to say mathematically that I was finding the determinant of the above example matrix, I could write it as: det(A)= |a b c| |d e f| |g h i| This notation will be used in the formula, so it is important to know this. For the sake of an arbitrary example, let us suppose I chose Row 1 of the matrix as my chosen row. To find the determinant of this matrix, I will perform the following calculation: (-1)2(a)|e f| + (-1)3(b)|d f| + (-1)4(c)|d e| |h i| |g i| |g h| This is the specific application of this general formula to the example matrix: (-1)i+j(aij)det(A1) In this formula, i and j are the row and column addresses, respectively, of a given matrix element. So, like in our specific application, when Row 1 was chosen as our subject row, the first term was (-1)1+1(A11)det(A1). The element "a" is in the first row, first column of the matrix, mean i=1 and j=1, therefore the superscript of (-1) is 1+1=2. A11 is simply the value held in the address i=1, j=1 of the matrix A. For this application, A11 was "a". det(A1) is the determinant of the submatrix A1. This submatrix has no formal nomenclature, I simply call it this for ease of explanation. A1 is the matrix created by "crossing out" the row and column that belong to the matrix element A11. In this application, that means it is the submatrix that is left after crossing out a, b, c, d, and g, which is simply the 2 x 2 matrix e,f;h,i. Performing this same process for the remainder of the matrix elements in Row 1 will yield the determinant of the matrix. So, the "generalized" form of the specific application above is: (-1)1+1(A11)det(A1) + (-1)1+2(A12)det(A2) + (-1)1+3(A13)det(A3) where A1 is the submatrix created by crossing out Row 1 and Column 1, A2 is the submatrix created by crossing out Row 1 and Column 2, and A3 is the submatrix created by crossing out Row 1 and Column 3. A final note is how to calculate the determinants of the submatrices. For a 3 x 3 matrix, its submatrices are all 2 x 2. For 2 x 2 matrices, a simple formula exists that makes this easy: |a b| = (ad) - (bc) |c d| For higher-dimension matrices, the submatrices also become larger, making the computation much more intensive.


Where you use matrix algebra?

There are very many applications but one of the more common one for elementary users is for solving simultaneous equations.


Applications of matrix in real life?

Matrices can be used to collect data. They can also be used in cryptography--the practice and study of hiding information.