I'm going to list them all in sets of (Q, D, N, P), where Q = quarters, D = dimes, N = nickels, and P = pennies.
(1, 0, 1, 1)
(1, 0, 0, 6)
(0, 3, 0, 1)
(0, 2, 2, 1)
(0, 2, 1, 6)
(0, 2, 0, 11)
(0, 1, 4, 1)
(0, 1, 3, 6)
(0, 1, 2, 11)
(0, 1, 1, 16)
(0, 1, 0, 21)
(0, 0, 6, 1)
(0, 0, 5, 6)
(0, 0, 4, 11)
(0, 0, 3, 16)
(0, 0, 2, 21)
(0, 0, 1, 26)
(0, 0, 0, 31)
Thus, there are 18 total combinations.