answersLogoWhite

0


Best Answer

Closure, an identity element, inverse elements, associative property, commutative property

User Avatar

Wiki User

โˆ™ 2012-02-24 00:09:05
This answer is:
๐Ÿ™
0
๐Ÿคจ
0
๐Ÿ˜ฎ
0
User Avatar
Study guides

Algebra

20 cards

A polynomial of degree zero is a constant term

The grouping method of factoring can still be used when only some of the terms share a common factor A True B False

The sum or difference of p and q is the of the x-term in the trinomial

A number a power of a variable or a product of the two is a monomial while a polynomial is the of monomials

โžก๏ธ
See all cards

J's study guide

2 cards

What is the name of Steve on minecraft's name

What is love

โžก๏ธ
See all cards

Steel Tip Darts Out Chart

96 cards

170

169

168

167

โžก๏ธ
See all cards

Add your answer:

Earn +20 pts
Q: What are the properties of mathematical system to be a commutative group?
Write your answer...
Submit
Related questions

Which property involves changing how group the addends?

Commutative and associative properties.


What are the groups in commutative nouns?

The term commutative group is used as a noun in sentences. A commutative group is a group that satisfies commutative law in mathematics. Commutative law states that we can swap numbers of problem when adding or multiplying.


Is the symmetry group of the square an abelian group?

Abelian meaning commutative. If the symmetry group of a square is commutative then it's an abelian group or else it's not.


Properties of the set of real numbers?

The real number system is a mathematical field. To start with, the Real number system is a Group. This means that it is a set of elements (numbers) with a binary operation (addition) that combines any two elements in the set to form a third element which is also in the set. The Group satisfies four axioms: closure, associativity, identity and invertibility. In addition, it is a Ring. A ring is an Abelian group (that is, addition is commutative) and it has a second binary operation (multiplication) that is defined on its elements. This second operation is distributive over the first. And finally, a Field is a Ring over which division - by non-zero numbers - is defined. There are several mathematical terms above which have been left undefined to keep the answer to a manageable size. All these algebraic structures are more than a term's worth of studying. You can find out more about them using Wikipedia but be sure to select the hit that has "mathematical" in it!


Is the set of positive integers a commutative group under the operation of addition?

No. It is not a group.


What is real number of system?

The real number system is a mathematical field. To start with, the Real number system is a Group. This means that it is a set of elements (numbers) with a binary operation (addition) that combines any two elements in the set to form a third element which is also in the set. The Group satisfies four axioms: closure, associativity, identity and invertibility. In addition, it is a Ring. A ring is an Abelian group (that is, addition is commutative) and it has a second binary operation (multiplication) that is defined on its elements. This second operation is distributive over the first. And finally, a Field is a Ring over which division - by non-zero numbers - is defined. There are several mathematical terms above which have been left undefined to keep the answer to a manageable size. All these algebraic structures are more than a term's worth of studying. You can find out more about them using Wikipedia but be sure to select the hit that has "mathematical" in it!


What are the rules of the real number system?

The real number system is a mathematical field. To start with, the Real number system is a Group. This means that it is a set of elements (numbers) with a binary operation (addition) that combines any two elements in the set to form a third element which is also in the set. The Group satisfies four axioms: closure, associativity, identity and invertibility. In addition, it is a Ring. A ring is an Abelian group (that is, addition is commutative) and it has a second binary operation (multiplication) that is defined on its elements. This second operation is distributive over the first. And finally, a Field is a Ring over which division - by non-zero numbers - is defined. There are several mathematical terms above which have been left undefined to keep the answer to a manageable size. All these algebraic structures are more than a term's worth of studying. You can find out more about them using Wikipedia but be sure to select the hit that has "mathematical" in it!


What is axioms of real number?

The real number system is a mathematical field. To start with, the Real number system is a Group. This means that it is a set of elements (numbers) with a binary operation (addition) that combines any two elements in the set to form a third element which is also in the set. The Group satisfies four axioms: closure, associativity, identity and invertibility. In addition, it is a Ring. A ring is an Abelian group (that is, addition is commutative) and it has a second binary operation (multiplication) that is defined on its elements. This second operation is distributive over the first. And finally, a Field is a Ring over which division - by non-zero numbers - is defined. The algebraic structures (Group, Ring, Field) are more than a term's worth of studying. There are also several mathematical terms above which have been left undefined to keep the answer to a manageable size. You can find out more about them using Wikipedia but be sure to select the hit that has "mathematical" in it!


What are the properties of a subgroup?

The properties of a subgroup would include the identity of the subgroup being the identity of the group and the inverse of an element of the subgroup would be the same in the group. The intersection of two subgroups would be a separate group in the system.


What is a synonym for commutative property?

abelian group


What makes up a real number system?

The real number system is a mathematical field.To start with, the Real number system is a Group. This means that it is a set of elements (numbers) with a binary operation (addition) that combines any two elements in the set to form a third element which is also in the set. The Group satisfies four axioms: closure, associativity, identity and invertibility.In addition, it is a Ring. A ring is an Abelian group (that is, addition is commutative) and it has a second binary operation (multiplication) that is defined on its elements. This second operation is distributive over the first.And finally, a Field is a Ring over which division - by non-zero numbers - is defined.There are several mathematical terms above which have been left undefined to keep the answer to a manageable size. All these algebraic structures are more than a term's worth of studying. You can find out more about them using Wikipedia but be sure to select the hit that has "mathematical" in it!


Is the set of rational numbers a commutative group under the operation of division?

No, it is not.


How do commutative and associative properties help solve 5x17x2?

5*17*2 The commutative property allows yu to swap the 17 and 2: = 5*2*17 The associative property allows you to group 5 and 2 to evaluate first = (5*2)*17 = 10*17 = 170


What is 5ab squared?

(5ab)2 = 25a2b2 (provided a and b are elements of a commutative group).


What is the population of Centro Properties Group?

Centro Properties Group's population is 710.


Why dont the elements within an A group in the periodic table have identical properties?

They do, have similar properties. Any elements in the same group have the same properties.


What is the opposite of expression?

Mispronunciation. In mathematical terms, the opposite would be a group of words, since expression can mean a group of mathematical symbols representing a number or quantity.


What properties of an element does the group number identifying the numbering system that uses a and B?

Pretty sure it's the valence electrons


What is another name for a group of elements with similar properties on the periodic table of elements?

Family. Apex


Which property says that the product of a group of quantities is not dependent on the order in which the quantities are multiplied?

Commutative Property of Addition


What are the characteristics of real numbers?

The real number system is a mathematical field.To start with, the Real number system is a Group. This means that it is a set of elements (numbers) with a binary operation (addition) that combines any two elements in the set to form a third element which is also in the set. The Group satisfies four axioms: closure, associativity, identity and invertibility.In addition, it is a Ring. A ring is an Abelian group (that is, addition is commutative) and it has a second binary operation (multiplication) that is defined on its elements. This second operation is distributive over the first.And finally, a Field is a Ring over which division - by non-zero numbers - is defined.There are several mathematical terms above which have been left undefined to keep the answer to a manageable size. All these algebraic structures are more than a term's worth of studying. You can find out more about them using Wikipedia but be sure to select the hit that has "mathematical" in it!


What is the commutative property?

The commutative property involves the condition that a group of quantities connected by operators gives the same result whatever the order of the quantities involved. a × b = b × a a + b = b + a if you change the order of a problem it doesn't change the value


Which elements have properties similar to calcium?

elements in each group of the periodic table have identical chemical properties as they have the same no. of valence electrons which determines their chemical properties. since calcium is in group II of the periodic table, it has the same chemical properties as the elements in group II. Elements in group II consists of: Be, Mg, Ca, Sr, Ba, Ra Elements in the same group has different physical properties such as boiling and melting points. However there are trends of their physical properties down the group.


What do elements in a group have the same?

Elements is the same group in the periodic table do not necessarily have the SAME properties, but they do have similar properties. What they all do have in common is the number of valence electrons in their outermost shell.


Did Mendeleev group elements that had similar properties?

Yes. Mendeleev did group elements in similar properties.