answersLogoWhite

0


Want this question answered?

Be notified when an answer is posted

Add your answer:

Earn +20 pts
Q: What are the start and end points o fthe field lines as indicated by the fillings?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Math & Arithmetic

What are points and lines in a plane?

Points and lines on the same plane are coplanar.


How is the strength of an electric field indicated with electric field lines?

Given a positive charge the electric field lines are drawn starting from the charge and pointing radially outward, ending in principle at infinity, according to the electric field strength being proportional to the inverse square of distance. From the definition of electric field we know that the modulous of the electric field is greater for smaller distances from the field generating charge. Since the electric field lines point radially outward we consider the density of lines an indication of the strength of the electirc field. If we immagine to trace a circle around the electric field generating charge, of radius slightly greater than the radius of the object which holds the charge and therefore generates the electric field, such circle will be crossed by a number 'n' of lines. The density of lines crossing the cirle will then be the circumference of the circle divided by the number 'n' of lines. For a larger circle we will have a greater circumference, but same number of lines 'n', and therefore a smaller density of lines crossing it, which idicates a lower intesity of electric field for a greater distance from the charge.


Do 3 lines that intersect in 3 points?

A triangle? Three lines that intersect in three points.


What are points or lines that are not in the same plane?

If the question is .. " Points and lines in the same plane "? then the anwser is COPLANER


Where do magnetic field lines cross?

Magnetic field lines don't cross.

Related questions

What are magnetic field lines and how do they show the strength of a magnet?

Magnetic fields are bascially lines of force caused by magnetic poles. It is invisible, but you can track how the field lines are formed doing a small experiment. Spread some iron fillings on a tray. Then bring a magnet up close to the iron fillings but not too close. You can observe that the iron fillings move into the field lines of the magnet that you brought up close. That's a miniature of a magnetic field. The earth's magnetic field is much bigger.


Are the magnetic lines force of a bar magnets strongest at the end of the magnet or in the middle?

That is where the field lines originate and therefore where they are thickest. The thicker the field lines, the stronger the field. To see the magnetic field lines, cover your magnet with a piece of paper and spread metal fillings over it.


From what points do the lines of force of Earth's magnetic field extend?

They extend between the North and South MagneticPoles.


What is meant by electric field intencity?

An electric field can be represented diagrammatically as a set of lines with arrows on, called electric field-lines, which fill space. Electric field-lines are drawn according to the following rules: The direction of the electric field is everywhere tangent to the field-lines, in the sense of the arrows on the lines. The magnitude of the field is proportional to the number of field-lines per unit area passing through a small surface normal to the lines. Thus, field-lines determine the magnitude, as well as the direction, of the electric field. In particular, the field is strong at points where the field-lines are closely spaced, and weak at points where they are far apart. Electric Field intensity It was stated that the electric field concept arose in an effort to explain action-at-a-distance forces. All charged objects create an electric field which extends outward into the space which surrounds it. The charge alters that space, causing any other charged object that enters the space to be affected by this field. The strength of the electric field is dependent upon how charged the object creating the field is and upon the distance of separation from the charged object. In this section of Lesson 4, we will investigate electric field from a numerical viewpoint - the electric field strength. An electric field can be represented diagrammatically as a set of lines with arrows on, called electric field-lines, which fill space. Electric field-lines are drawn according to the following rules: The direction of the electric field is everywhere tangent to the field-lines, in the sense of the arrows on the lines. The magnitude of the field is proportional to the number of field-lines per unit area passing through a small surface normal to the lines. Thus, field-lines determine the magnitude, as well as the direction, of the electric field. In particular, the field is strong at points where the field-lines are closely spaced, and weak at points where they are far apart. Electric Field intensity It was stated that the electric field concept arose in an effort to explain action-at-a-distance forces. All charged objects create an electric field which extends outward into the space which surrounds it. The charge alters that space, causing any other charged object that enters the space to be affected by this field. The strength of the electric field is dependent upon how charged the object creating the field is and upon the distance of separation from the charged object. In this section of Lesson 4, we will investigate electric field from a numerical viewpoint - the electric field strength.


What is the definition of a isoline map?

Lines that are drawn on a field map to connect all of the points on that map that have the same value


What do the electric field lines look like when the electric field has the same strength at all points in a region?

All of the lines, in the field are uniformly spaced, because the fartherapartthe lines are, the weaker the field is, but if the field is the same all around, then the lines are also the same, all around the field.


What are points and lines in a plane?

Points and lines on the same plane are coplanar.


If you place a charge into an electric field it will move in the direction indicated by the electric field lines?

it will occure if the charge is positive, other wise it will move to opposite direction.


How many points do parallel lines have in common?

the parallel lines never intercept so they do not have any common points.


How is the strength of an electric field indicated with electric field lines?

Given a positive charge the electric field lines are drawn starting from the charge and pointing radially outward, ending in principle at infinity, according to the electric field strength being proportional to the inverse square of distance. From the definition of electric field we know that the modulous of the electric field is greater for smaller distances from the field generating charge. Since the electric field lines point radially outward we consider the density of lines an indication of the strength of the electirc field. If we immagine to trace a circle around the electric field generating charge, of radius slightly greater than the radius of the object which holds the charge and therefore generates the electric field, such circle will be crossed by a number 'n' of lines. The density of lines crossing the cirle will then be the circumference of the circle divided by the number 'n' of lines. For a larger circle we will have a greater circumference, but same number of lines 'n', and therefore a smaller density of lines crossing it, which idicates a lower intesity of electric field for a greater distance from the charge.


What are the fillings for romeos soliloquy lines?

The soliloquy in Romeo and Juliet refers to Romeo's reflections on love, particularly his feelings for Juliet. The fillings for these lines could include emotions like passion, longing, desperation, and impulsiveness as Romeo grapples with the intensity of his new love for Juliet.


What do lines represent in an electirc field diagram?

The lines in each diagram represent an electric field. The stronger the field, the close together the lines are.