The answer is A.
I have a code for 16 bit subtraction.. just replace ax by al,bx by bl etc... .code main proc mov ax,@data mov ds,ax lea dx,msg ;printing msg mov ah,09h int 21h mov ax,x ;ax=x(any number) mov bx,y ;bx=y( " ") cmp ax,0 ;jump to l3 if ax is negtive jb l3 cmp bx,0 ;jump to l6 if bx is negative jb l6 cmp ax,bx ;if ax<bx,then jump to l1 jl l1 sub ax,bx ;else normal sub mov diff,ax ;diff=result is stored jmp l2 l1: ;iff (+)ax<(+)bx neg bx ;bx=-bx clc add ax,bx neg ax ;-ans=ans mov diff,ax mov dx,2dh ;print '-' mov ah,02h int 21h jmp l2 l3: ;iff (-)ax neg ax ;-ax=ax cmp bx,0 ;jump to l4 if bx is negative jb l4 clc add ax,bx ;ax=(+)ax+(+)bx mov ax,diff mov dx,2dh ;print '-' mov ah,02h int 21h jmp l2 l4: ;if (-)ax & (-)bx neg bx ;-bx=bx cmp ax,bx ;if ax>bx then jump to l5 jg l5 sub ax,bx ;else ax-bx mov diff,ax mov dx,2dh ;print '-' mov ah,02h int 21h jmp l3 l5: ;if(-)ax>(-)bx xchg ax,bx ;exchange ax and bx sub ax,bx ;ax-bx mov diff,ax ;ans is positive jmp l2 l6: ;iff (-)bx neg bx ;-bx=bx add ax,bx ;ax-(-)bx mov diff,ax ;ans will be positive mov ah,4ch int 21h main endp
4
To complement the 6th bit of the BX register in assembly language, you can use the XOR instruction. The 6th bit corresponds to the bit mask 0x20 (binary 0010 0000). The code would look like this: MOV AX, 6 ; Load AX with 6 (not directly relevant to complementing BX) XOR BX, 0x20 ; Complement the 6th bit of BX This will toggle the 6th bit of BX, effectively complementing it.
Ax + Bx + C is not a trinomial!
The degree of a quadratic inequality is 2. This is because it involves a quadratic expression, typically in the form (ax^2 + bx + c ), where (a), (b), and (c) are constants and (a \neq 0). The inequality can be expressed as (ax^2 + bx + c < 0), (ax^2 + bx + c > 0), or similar forms, all of which are characterized by the highest exponent of the variable being 2.
.code main proc mov ax,@data mov ds,ax lea dx,msg ;printing msg mov ah,09h int 21h mov ax,x ;ax=x mov bx,y ;bx=y cmp ax,0 ;jump to l3 if ax is negtive jb l3 cmp bx,0 ;jump to l6 if bx is negative jb l6 cmp ax,bx ;if ax<bx,then jump to l1 jl l1 sub ax,bx ;else normal sub mov diff,ax ;diff=result is stored jmp l2 l1: ;iff (+)ax<(+)bx neg bx ;bx=-bx clc add ax,bx neg ax ;-ans=ans mov diff,ax mov dx,2dh ;print '-' mov ah,02h int 21h jmp l2 l3: ;iff (-)ax neg ax ;-ax=ax cmp bx,0 ;jump to l4 if bx is negative jb l4 clc add ax,bx ;ax=(+)ax+(+)bx mov ax,diff mov dx,2dh ;print '-' mov ah,02h int 21h jmp l2 l4: ;if (-)ax & (-)bx neg bx ;-bx=bx cmp ax,bx ;if ax>bx then jump to l5 jg l5 sub ax,bx ;else ax-bx mov diff,ax mov dx,2dh ;print '-' mov ah,02h int 21h jmp l3 l5: ;if(-)ax>(-)bx xchg ax,bx ;exchange ax and bx sub ax,bx ;ax-bx mov diff,ax ;ans is positive jmp l2 l6: ;iff (-)bx neg bx ;-bx=bx add ax,bx ;ax-(-)bx mov diff,ax ;ans will be positive mov ah,4ch int 21h main endp
I have a code for 16 bit subtraction.. just replace ax by al,bx by bl etc... .code main proc mov ax,@data mov ds,ax lea dx,msg ;printing msg mov ah,09h int 21h mov ax,x ;ax=x(any number) mov bx,y ;bx=y( " ") cmp ax,0 ;jump to l3 if ax is negtive jb l3 cmp bx,0 ;jump to l6 if bx is negative jb l6 cmp ax,bx ;if ax<bx,then jump to l1 jl l1 sub ax,bx ;else normal sub mov diff,ax ;diff=result is stored jmp l2 l1: ;iff (+)ax<(+)bx neg bx ;bx=-bx clc add ax,bx neg ax ;-ans=ans mov diff,ax mov dx,2dh ;print '-' mov ah,02h int 21h jmp l2 l3: ;iff (-)ax neg ax ;-ax=ax cmp bx,0 ;jump to l4 if bx is negative jb l4 clc add ax,bx ;ax=(+)ax+(+)bx mov ax,diff mov dx,2dh ;print '-' mov ah,02h int 21h jmp l2 l4: ;if (-)ax & (-)bx neg bx ;-bx=bx cmp ax,bx ;if ax>bx then jump to l5 jg l5 sub ax,bx ;else ax-bx mov diff,ax mov dx,2dh ;print '-' mov ah,02h int 21h jmp l3 l5: ;if(-)ax>(-)bx xchg ax,bx ;exchange ax and bx sub ax,bx ;ax-bx mov diff,ax ;ans is positive jmp l2 l6: ;iff (-)bx neg bx ;-bx=bx add ax,bx ;ax-(-)bx mov diff,ax ;ans will be positive mov ah,4ch int 21h main endp
Ax + Bx + C is called an algebraic expression.
Best way: Use angle addition. Sin(Ax)Cos(Bx) = (1/2) [sin[sum x] + sin[dif x]], where sum = A+B and dif = A-B To show this, Sin(Ax)Cos(Bx) = (1/2) [sin[(A+B) x] + sin[(A-B) x]] = (1/2) [(sin[Ax]Cos[Bx]+sin[Bx]cos[Ax]) + (sin[Ax]cos[-Bx]+sin[-Bx]cos[Ax])] Using the facts that cos[-k] = cos[k] and sin[-k] = -sin[k], we have: (1/2) [(sin[Ax]Cos[Bx]+sin[Bx]cos[Ax]) + (sin[Ax]cos[-Bx]+sin[-Bx]cos[Ax])] (1/2) [(sin[Ax]Cos[Bx]+sin[Bx]cos[Ax]) + (sin[Ax]cos[Bx]-sin[Bx]cos[Ax])] (1/2) 2sin[Ax]Cos[Bx] sin[Ax]Cos[Bx] So, Int[Sin(3y)Cos(5y)dy] = (1/2)Int[Sin(8y)-Sin(2y)dy] = (-1/16) Cos[8y] +1/4 Cos[2y] + C You would get the same result if you used integration by parts twice and played around with trig identities.
4
x2+bx+ax+ab = x2+ax+bx+ab = x(x+a)+b(x+a) = (x+a)(x+b)
Ax + B = Bx + C Ax - Bx = (C - B) x (A - B) = (C - B) x = (C - B) / (A - B)
Mov ax,1234 mov bx,2345 add ax,bx mov @(some memory location ) say 2200,ax hlt
Yes, as long as one of them is the accumulator... ADD BX ... adds BX to AX and leaves the result in AX.
aX^2 + bX + c
3a+ax+3b+bx = 3(a+b)+(a+b)x = (a+b)(3+x)
ax^2+bx+c=0 is the standard form of a quadratic function.