The scale factor
congruent figure
Dilation is a linear transformation that enlarges or shrinks a figure proportionally. It is also referred to as uniform scaling in Euclidean geometry.
yes
Dilation is a transformation in which a figure is enlarged or reduced.
It is simply called an enlargement which is one of the four possible transformations on the Cartesian plane.
The two key characteristics of a dilation are the center of dilation and the scale factor. The center of dilation is a fixed point in the plane from which all other points are expanded or contracted. The scale factor determines how much the figure is enlarged or reduced; a scale factor greater than one enlarges the figure, while a scale factor between zero and one reduces it. Dilation preserves the shape of the figure but changes its size.
Scaling.
Scaling will proportionally reduce or enlarge a figure. The amount of scaling is given by the scale factor (greater than zero) If the scale factor is less than 1, the figure is reduced and it is sometimes called a contraction If the scale factor is greater than 1, the figure is enlarged, and it is called a dilation or enlargement. If a centre of enlargement is used, the distance of every point from the centre is multiplied by the scale factor. The scale factor can be negative in which case the distance to the new point is measured on the opposite side of the centre to the original point.
4, -3
Heart
A dilation with a scale factor of 0.5 reduces the size of the figure to half its original dimensions, resulting in a smaller figure. In contrast, a dilation with a scale factor of 2 enlarges the figure to twice its original dimensions, creating a larger figure. Therefore, the two dilations produce figures that are similar in shape but differ significantly in size, with the scale factor of 2 yielding a figure that is four times the area of the figure dilated by 0.5.
Scaling changes the size of a figure. If the scale factor is greater than 1, the figure is enlarged; if the scale factor is less than 1, the figure is reduced. I the scale factor is equal to 1, the figure's size is unchanged. If there is a centre of enlargement, the new figure can be drawn exactly by multiplying the distance of every point from the centre of enlargement, multiplying this by the scale factor and drawing the new point at this distance from the centre of enlargement. (For a polygonal figure, only the vertices need be measured and the lines between the vertices of the original figure drawn in). With a centre of enlargement, the scale factor can be negative. In this case, the distance to the new points is measured on the opposite side of the centre to the original points, so that it is a straight line form the original point, through the centre to the new point.