I'm afraid you will have to give more context that that!
57 H V - hienz varities
No offense but are you really that dumb?! V means vertical H means horizontal
57 heinz varieties
The equation of a parabola that opens left or right with its vertex at the point ((h, v)) is given by ((y - v)^2 = 4p(x - h)), where (p) is the distance from the vertex to the focus. If (p > 0), the parabola opens to the right, and if (p < 0), it opens to the left.
The equation that describes a parabola that opens up or down with its vertex at the point (h, v) is given by the vertex form of a quadratic equation: ( y = a(x - h)^2 + v ), where ( a ) determines the direction and width of the parabola. If ( a > 0 ), the parabola opens upwards, while if ( a < 0 ), it opens downwards.
An equation that describes a parabola opening left or right with its vertex at the point ((h, v)) can be expressed as ((y - v)^2 = 4p(x - h)), where (p) determines the direction and width of the parabola. If (p > 0), the parabola opens to the right, and if (p < 0), it opens to the left.
D=E/((1+v)(1-2v))*[1-v v v 0 0 0; v 1-v v 0 0 0; v v 1-v 0 0 0; 0 0 0 0.5(1-2v) 0 0; 0 0 0 0 0.5(1-2v); 0 0 0 0 0 0.5(1-2v)]
Slice the bowl horizontally into circles, then integrate the area of the circles. The area of each circle is (pi * r^2). The height of each slice is dh. The 1st (bottom) circle is r=0. The r^2 of each circle-slice is (2*A*h-h^2), where A is the spherical radius, and h is the variable height of any given slice. At the top of the water level, (r^2=2*A*H-H^2). Integrate the area over the interval h=0->H as follows: V=pi * integral[(2*A*h - h^2) dh]; h=0->H to yield V=pi * (2*A*h^2 / 2 - h^3 / 3); h=0->H V=pi * (A*H^2 - H^3 / 3). As a check, plug the full diameter (2*A) in for H. If you did the integration correctly, you will get the full volume of the sphere, (4/3 * pi * A^3).
H. V. Sheshadri died in 2005.
H. V. Sheshadri was born in 1926.
H. V. Meyerowitz was born in 1900.
H. V. Meyerowitz died in 1945.