A sigma factor (σ factor) is a protein needed only for initiation of RNA synthesis.
Six Sigma is the basis on top.
Jason kidd
affects both initiation and elongation.....
The great one
he have 609 assits
The sigma factor is a protein that helps RNA polymerase bind to specific DNA sequences, known as promoters, to initiate gene transcription. It plays a crucial role in determining which genes are transcribed and when they are transcribed in a cell.
when RNA Polymerase meet the correct promoter(TATA box), it will bind at that region and then sigma factor will also bind to the RNA Polymerase.once ATP give energy, sigma factor will dissoiates from RNA Polymerase and the enzyme start to unwind the double helix
the job duties for a tax account is assits taxpayer,provides data for tax returns the job duties for a tax account is assits taxpayer,provides data for tax returns the job duties for a tax account is assits taxpayer,provides data for tax returns
The sigma factor is a protein that helps RNA polymerase bind to the promoter region of a gene during transcription. It plays a crucial role in initiating the process of transcription by guiding RNA polymerase to the correct starting point on the DNA strand.
The sigma factor of RNA polymerase helps to recognize and bind to specific DNA sequences, known as promoters, to initiate the process of transcription. It plays a crucial role in determining which genes are transcribed and when they are transcribed in a cell.
according to information from http://www.rothamsted.ac.uk/notebook/courses/guide/trans.htm " if the RNA polymerase attaches to a special sequence called a promoter, an additional small protein, the factor sigma, will also attach to the polymerase and lock it on the DNA. The factor 'sigma' will only attach itself to the complex DNA / RNA polymerase when the RNA polymerase is attached to a promoter. Another hypothesis is that the factor sigma attaches to RNApol anyway and the enzyme is then able to slide along the DNA until it finds a promoter. It prevents detaching and speeds up promoter location, and decreases the affinity of RNApol for general regions of DNA. " Therefore, the answer seems to be, RNA attaches to DNA through a small protein called the factor sigma once the RNA polymerase attaches itself to a chain sequence called a "promoter". according to information from http://www.rothamsted.ac.uk/notebook/courses/guide/trans.htm " if the RNA polymerase attaches to a special sequence called a promoter, an additional small protein, the factor sigma, will also attach to the polymerase and lock it on the DNA. The factor 'sigma' will only attach itself to the complex DNA / RNA polymerase when the RNA polymerase is attached to a promoter. Another hypothesis is that the factor sigma attaches to RNApol anyway and the enzyme is then able to slide along the DNA until it finds a promoter. It prevents detaching and speeds up promoter location, and decreases the affinity of RNApol for general regions of DNA. " Therefore, the answer seems to be, RNA attaches to DNA through a small protein called the factor sigma once the RNA polymerase attaches itself to a chain sequence called a "promoter". role of sigmaActually RNA Polymerase can bind to DNA anywhere in the entire genome but sigma factor attaches to polymerase only when it is at promotor. sigma factor dissociates when polymerase crosses promotor. sigma factor stablises the pre initiatiation complex. Actually there are many promoter and many genes but which gene to be transcribed is decided by sigma factor.
cacadoes all the work