2 pi, often written as (2\pi), is a mathematical constant that represents the circumference of a circle with a radius of 1. Its approximate numerical value is about 6.28318. In mathematics, it frequently appears in formulas related to circular and periodic functions, such as trigonometry and calculus.
Assuming the shape concerned is a circle, Radius = Circumference/(2*pi)and thenArea = pi*(radius)2= pi*(circumference)2/(2*pi)2= (circumference)2/(4*pi)Assuming the shape concerned is a circle, Radius = Circumference/(2*pi)and thenArea = pi*(radius)2= pi*(circumference)2/(2*pi)2= (circumference)2/(4*pi)Assuming the shape concerned is a circle, Radius = Circumference/(2*pi)and thenArea = pi*(radius)2= pi*(circumference)2/(2*pi)2= (circumference)2/(4*pi)Assuming the shape concerned is a circle, Radius = Circumference/(2*pi)and thenArea = pi*(radius)2= pi*(circumference)2/(2*pi)2= (circumference)2/(4*pi)
To find an angle that is coterminal with ( \frac{3\pi}{2} ), you can add or subtract multiples of ( 2\pi ). For example, ( \frac{3\pi}{2} + 2\pi = \frac{3\pi}{2} + \frac{4\pi}{2} = \frac{7\pi}{2} ) is coterminal with ( \frac{3\pi}{2} ). Similarly, subtracting ( 2\pi ) gives ( \frac{3\pi}{2} - 2\pi = \frac{3\pi}{2} - \frac{4\pi}{2} = -\frac{\pi}{2} ), which is also coterminal.
C = 2 pi R = 9.42 R = 9.42 / (2 pi) A = pi R2 = pi [ 9.42 / (2 pi) ]2 = (9.42)2 pi / 4 pi2 = (9.42)2 / (4 pi) = 7.0614 (rounded) ======================================== I just thought of something: C = 2 pi R A = pi R2 = 1/2 (2 pi R) x (R) = 1/2 (2 pi R) x (1/2pi) (2 pi R) = C/2 x C/(2 pi) = C2 / (4 pi)Let's see if this gives the same answer as above: C2 / (4 pi) = (9.42)2 / (4 pi) = 7.0614 Yay ! Next time, I'll remember that the area is (circumference2) divided by (4 pi).
11pi/12 = pi - pi/12 cos(11pi/12) = cos(pi - pi/12) cos(a-b) = cos(a)cos(b)+sin(a)sin(b) cos(pi -pi/12) = cos(pi)cos(pi/12) + sin(pi)sin(pi/12) sin(pi)=0 cos(pi)=-1 Therefore, cos(pi -pi/12) = -cos(pi/12) pi/12=pi/3 -pi/4 cos(pi/12) = cos(pi/3 - pi/4) = cos(pi/3)cos(pi/4)+sin(pi/3) sin(pi/4) cos(pi/3)=1/2 sin(pi/3)=sqrt(3)/2 cos(pi/4)= sqrt(2)/2 sin(pi/4) = sqrt(2)/2 cos(pi/3)cos(pi/4)+sin(pi/3) sin(pi/4) = (1/2)(sqrt(2)/2 ) + (sqrt(3)/2)( sqrt(2)/2) = sqrt(2)/4 + sqrt(6) /4 = [sqrt(2)+sqrt(6)] /4 Therefore, cos(pi/12) = (sqrt(2)+sqrt(6))/4 -cos(pi/12) = -(sqrt(2)+sqrt(6))/4 cos(11pi/12) = -(sqrt(2)+sqrt(6))/4
Do you mean Sin(pi/2) = 1 or [Sin(pi)] /2 = 0.0274....
2 pi / 2 = pi.
Assuming the shape concerned is a circle, Radius = Circumference/(2*pi)and thenArea = pi*(radius)2= pi*(circumference)2/(2*pi)2= (circumference)2/(4*pi)Assuming the shape concerned is a circle, Radius = Circumference/(2*pi)and thenArea = pi*(radius)2= pi*(circumference)2/(2*pi)2= (circumference)2/(4*pi)Assuming the shape concerned is a circle, Radius = Circumference/(2*pi)and thenArea = pi*(radius)2= pi*(circumference)2/(2*pi)2= (circumference)2/(4*pi)Assuming the shape concerned is a circle, Radius = Circumference/(2*pi)and thenArea = pi*(radius)2= pi*(circumference)2/(2*pi)2= (circumference)2/(4*pi)
To find an angle that is coterminal with ( \frac{3\pi}{2} ), you can add or subtract multiples of ( 2\pi ). For example, ( \frac{3\pi}{2} + 2\pi = \frac{3\pi}{2} + \frac{4\pi}{2} = \frac{7\pi}{2} ) is coterminal with ( \frac{3\pi}{2} ). Similarly, subtracting ( 2\pi ) gives ( \frac{3\pi}{2} - 2\pi = \frac{3\pi}{2} - \frac{4\pi}{2} = -\frac{\pi}{2} ), which is also coterminal.
No. It is circumference/(2*pi)No. It is circumference/(2*pi)No. It is circumference/(2*pi)No. It is circumference/(2*pi)
C = 2 pi R = 9.42 R = 9.42 / (2 pi) A = pi R2 = pi [ 9.42 / (2 pi) ]2 = (9.42)2 pi / 4 pi2 = (9.42)2 / (4 pi) = 7.0614 (rounded) ======================================== I just thought of something: C = 2 pi R A = pi R2 = 1/2 (2 pi R) x (R) = 1/2 (2 pi R) x (1/2pi) (2 pi R) = C/2 x C/(2 pi) = C2 / (4 pi)Let's see if this gives the same answer as above: C2 / (4 pi) = (9.42)2 / (4 pi) = 7.0614 Yay ! Next time, I'll remember that the area is (circumference2) divided by (4 pi).
11pi/12 = pi - pi/12 cos(11pi/12) = cos(pi - pi/12) cos(a-b) = cos(a)cos(b)+sin(a)sin(b) cos(pi -pi/12) = cos(pi)cos(pi/12) + sin(pi)sin(pi/12) sin(pi)=0 cos(pi)=-1 Therefore, cos(pi -pi/12) = -cos(pi/12) pi/12=pi/3 -pi/4 cos(pi/12) = cos(pi/3 - pi/4) = cos(pi/3)cos(pi/4)+sin(pi/3) sin(pi/4) cos(pi/3)=1/2 sin(pi/3)=sqrt(3)/2 cos(pi/4)= sqrt(2)/2 sin(pi/4) = sqrt(2)/2 cos(pi/3)cos(pi/4)+sin(pi/3) sin(pi/4) = (1/2)(sqrt(2)/2 ) + (sqrt(3)/2)( sqrt(2)/2) = sqrt(2)/4 + sqrt(6) /4 = [sqrt(2)+sqrt(6)] /4 Therefore, cos(pi/12) = (sqrt(2)+sqrt(6))/4 -cos(pi/12) = -(sqrt(2)+sqrt(6))/4 cos(11pi/12) = -(sqrt(2)+sqrt(6))/4
Do you mean Sin(pi/2) = 1 or [Sin(pi)] /2 = 0.0274....
Circumference = 2 pi R = 33R = 33 / (2 pi)Area = pi R2 = pi (33)2 / (2 pi)2= (33)2 / (4 pi) = 86.66 square units
S = 2 pi r h + 2 pi r2S - 2 pi r2 = 2 pi r hh = (S - 2 pi r2) / (2 pi r)
(pi/2)-1 = 2/pi
all multiples of pi. pi, 2 pi, - pi, -2 pi and so on...
No, since Pi is an irrational number, 2(pi) would still be irrational.