Study guides

☆

Q: What is regression coefficient and correlation coefficient?

Write your answer...

Submit

Still have questions?

Related questions

A correlation coefficient is a value between -1 and 1 that shows how close of a good fit the regression line is. For example a regular line has a correlation coefficient of 1. A regression is a best fit and therefore has a correlation coefficient close to one. the closer to one the more accurate the line is to a non regression line.

The correlation coefficient is symmetrical with respect to X and Y i.e.The correlation coefficient is the geometric mean of the two regression coefficients. or .The correlation coefficient lies between -1 and 1. i.e. .

(a) Correlation coefficient is the geometric mean between the regression coefficients. (b) If one of the regression coefficients is greater than unity, the other must be less than unity. (c) Arithmetic mean of the regression coefficients is greater than the correlation coefficient r, provided r > 0. (d) Regression coefficients are independent of the changes of origin but not of scale.

8.7.4 Properties of Regression Coefficients:(a) Correlation coefficient is the geometric mean between the regression coefficients. (b) If one of the regression coefficients is greater than unity, the other must be less than unity.(c) Arithmetic mean of the regression coefficients is greater than the correlation coefficient r, providedr > 0.(d) Regression coefficients are independent of the changes of origin but not of scale.

False.

The sign is negative.

1 or -1

It's not quite possible for the coefficient of determination to be negative at all, because of its definition as r2 (coefficient of correlation squared). The coefficient of determination is useful since tells us how accurate the regression line's predictions will be but it cannot tell us which direction the line is going since it will always be a positive quantity even if the correlation is negative. On the other hand, r (the coefficient of correlation) gives the strength and direction of the correlation but says nothing about the regression line equation. Both r and r2 are found similarly but they are typically used to tell us different things.

Correlation is a measure of the degree of agreement in the changes (variances) in two or more variables. In the case of two variables, if one of them increases by the same amount for a unit increase in the other, then the correlation coefficient is +1. If one of them decreases by the same amount for a unit increase in the other, then the correlation coefficient is -1. Lesser agreement results in an intermediate value. Regression involves estimating or quantifying this relationship. It is very important to remember that correlation and regression measure only the linear relationship between variables. A symmetrical relationshup, for example, y = x2 between values of x with equal magnitudes (-a < x < a), has a correlation coefficient of 0, and the regression line will be a horizontal line. Also, a relationship found using correlation or regression need not be causal.

No, it cannot be a correlation coefficient.

Yes it can be a correlation coefficient.

A correlation coefficient is a numerical measure of the

People also asked