5mx10m
For two similar polygons, the ratio of their areas is equal to the square of the ratio of their corresponding side lengths. Given the similarity ratio of the smaller polygon to the larger polygon is 2:3, we calculate the area ratio as follows: ( \left(\frac{2}{3}\right)^2 = \frac{4}{9} ). Therefore, the ratio of the areas of the smaller polygon to the larger polygon is 4:9.
The perimeter of the larger polygon will have the same ratio to the perimeter of the smaller as the ratio of the corresponding sides. Therefore, the larger polygon will have a perimeter of 30(15/12) = 37.5, or 38 to the justified number of significant digits stated.
n. in congruent polygons, the pairs of sides which can be superimposed on one another. In similar polygons, the ratio of the length of a side on the larger polygon to the length of its corresponding side on the smaller polygon is the same for all the sides.
It depends on whether the ratio applies to the areas or to the lengths of the sides.
There cannot be a similar polygon by itself. One polygon is similar to another if all of their corresponding angles are equal. This requires that the lengths of corresponding sides are in the same ratio: that is, if one polygon is a dilation of the other.
Areas are proportional to the square of corresponding sides. Therefore, in this case: * Divide 144 by 36. * Take the square root of the result. That will give you the ratio of the corresponding sides.
yes, if the golden ratio is ((square root 5) +1)/2, then the silver ratio is (square root 2) +1. as the golden ratio is represented by phi, the silver ratio is represented by deltas. as two quantities are in the golden ratio if the ratio of the sum of the quantities to the larger quantity is equal to the ratio of the larger quantity to the smaller one, two quantities are in the silver ratio if the ratio between the sum of the smaller plus twice the larger of those quantities and the larger one is the same as the ratio between the larger one and the smaller.
The ratio of the surface areas of two similar figures is equal to the square of the ratio of their corresponding linear dimensions. Given the surface areas are 27 and 1331, the ratio of their corresponding linear dimensions is the square root of ( \frac{1331}{27} ). Since the volume ratio is the cube of the linear dimension ratio, we can find the larger volume by calculating ( \frac{1331}{27} ) and then multiplying the smaller volume (18) by the cube of that ratio. The larger volume is therefore ( 18 \times \left(\frac{1331}{27}\right)^{\frac{3}{2}} = 486 ).
Sure, honey, let's break it down. Since the flags are similar, their corresponding sides are in proportion. The ratio of their areas is the square of the ratio of their heights. So, if the larger flag's height is 180cm, the smaller flag's height would be 120cm (180cm * sqrt(0.8/5) = 120cm). Voilà!
It depends on the ratio of a polygon to WHAT!
The smaller to the larger is a ratio of 6:10 or 3:5
If two pyramids are similar, the ratio of their volumes is the cube of the ratio of their corresponding edge lengths. Given that the ratio of their edges is 3.11, the ratio of their volumes would be (3.11^3). Calculating this, the volume ratio is approximately 30.3. Thus, the volume of the larger pyramid is about 30.3 times that of the smaller pyramid.