http://en.wikipedia.org/wiki/Navier-Stokes_equations Please go to this page.
it is easy you can see any textbook........
The Navier-Strokes equation is a term in physics used to describe the motion of a fluid substance. The equation applies Newton's second law to fluid motion.
Dochan Kwak has written: 'Computation of viscous incompressible flows' -- subject(s): Computational fluid dynamics, Space shuttle main engine, Three dimensional flow, Incompressible flow, Finite difference theory, Navier-Stokes equation 'An incompressible Navier-Stokes flow solver in three-dimensional curvilinear coordinate system using primitive variables' -- subject(s): Spherical coordinates, Navier-Stokes equation
A. Arnone has written: 'A Navier-Stokes solver for cascade flows' -- subject(s): Cascade flow, Navier-Stokes equation
In fluid dynamics, the energy equation and the Navier-Stokes equations are related because the energy equation describes how energy is transferred within a fluid, while the Navier-Stokes equations govern the motion of the fluid. The energy equation accounts for the effects of viscosity and heat transfer on the fluid flow, which are also considered in the Navier-Stokes equations. Both equations are essential for understanding and predicting the behavior of fluids in various situations.
Moshe Israeli has written: 'Marching iterative methods for the parabolized and thin layer Navier-Stokes equations' -- subject(s): Iterative solution, Navier-Stokes equation
Yuichi Matsuo has written: 'Navier-Stokes simulations around a propfan using higher-order upwind schemes' -- subject(s): Prop-fans, Navier-Stokes equation
Nondimensionalization of equations are generally done to obtain the characteristic property of the system. Non Dimensionalization of incompressible navier stokes gives an equation in terms of Reynolds number hence simplifying the problem. Cheers Prasanth P
Peter M. Hartwich has written: 'High resolution upwind schemes for the three-dimensional, incompressible Navier-Stokes equations' -- subject(s): Navier-Stokes equation, Upwind schemes
W. Kelly Londenberg has written: 'Transonic Navier-Stokes calculations about a 65 degree Delta wing' -- subject(s): Delta wings, Turbulence models, Navier-Stokes equation, Transonic flow, Vortices
Klaus A. Hoffmann has written: 'Comparative analysis of Navier-Stokes codes - accuracy and efficiency' -- subject(s): Navier-Stokes equation 'Computational fluid dynamics for engineers' -- subject(s): Fluid dynamics, Numerical analysis