answersLogoWhite

0


Want this question answered?

Be notified when an answer is posted

Add your answer:

Earn +20 pts
Q: What is the domain and range of the function f(x) -3x 6?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Related questions

What is the range of fx equals 2-3x?

The range is the all the possible y-values for the function. f(x)=2-3x does not have any points where it is undefined because it is a linear function ( a line). The answer is all real numbers or (-infinity,infinity)


What is the range of the function fx 3.2x for the domain -4 -2 0 2 4?

It is -12.8, -6.4, 0, 6.4 and 12.8


Determine the domain function fx 8x-4x squared-5x-36?

f(x) = 8x - 4x2 - 5x - 36 = -4x2 + 3x - 36 The domain for f(x) can be the whole of the Complex field or any subset.


What best describes the function below fx equals 2x2-3x plus 1?

B- It is a many-to-one function


Graph the function fx equals -4?

The graph of the function f(x) = 4, is the horizontal line to the x=axis, which passes through (0, 4). The domain of f is all real numbers, and the range is 4.


What is the domain of the function fx equals -4?

The domain can be anything you like: a single element, all real numbers, all complex numbers, etc.


Function notation fx is read as?

If it were written in a book of some sort, fx or f(x) is read aloud as "f or x". "f" is a function of some variable, "x". By function it means something happens to x e.g. x2 or 3x+4.


Which is a zero of the function fx equals 3x - 21?

-18


If fx equals 3x-5 then f2 equals?

fx=3x-5 f=(3x-5)/x f2=(6x-10)/x /=divide


What is the value of the function fx equals 3x plus 2 and has a value between 5 and 17?

The function f(x) = 3x + 2 can take any real value, so the question does not seem to make any sense.


What is domain and range of random variable?

Let S denote the sample space underlying a random experiment with elements s 2 S. A random variable, X, is defined as a function X(s) whose domain is S and whose range is a set of real numbers, i.e., X(s) 2 R1. Example A: Consider the experiment of tossing a coin. The sample space is S = fH; Tg. The function X(s) = ½ 1 if s = H ¡1 if s = T is a random variable whose domain is S and range is f¡1; 1g. Example B: Let the set of all real numbers between 0 and 1 be the sample space, S. The function X(s) = 2s ¡ 1 is a random variable whose domain is S and range is set of all real numbers between ¡1 and 1. A discrete random variable is one whose range is a countable set. The random variable defined in example A is a discrete randowm variable. A continuous random variable is one whose range is not a countable set. The random variable defined in Example B is a continiuos random varible. A mixed random variable contains aspects of both these types. For example, let the set of all real numbers between 0 and 1 be the sample space, S. The function X(s) = ½ 2s ¡ 1 if s 2 (0; 1 2 ) 1 if s 2 [ 1 2 ; 1) is a mixed random variable with domain S and range set that includes set of all real numbers between ¡1 and 0 and the number 1. Cummulative Distribution Function Given a random variable X, let us consider the event fX · xg where x is any real number. The probability of this event, i.e., Pr(X · x), is simply denoted by FX(x) : FX(x) = Pr(X(s) · x); x 2 R1: The function FX(x) is called the probability or cumulative distribution fuction (CDF). Note that this CDF is a function of both the outcomes of the random experiment as embodied in X(s) and the particular scalar variable x. The properties of CDF are as follows: ² Since FX(x) is a probability, its range is limited to the interval: 0 · FX(x) · 1. ² FX(x) is a non-decreasing function in x, i.e., x1 < x2 Ã! FX(x1) · FX(x2): 1 ² FX(¡1) = 0 and FX(1) = 1. ² For continuous random variables, the CDF fX(x) is a unifromly continuous function in x, i.e., lim x!xo FX(x) = FX(xo): ² For discrete random variables, the CDF is in general of the form: FX(x) = X xi2X(s) piu(x ¡ xi); x 2 R1; where the sequence pi is called the probability mass function and u(x) is the unit step function. Probability Distribution Function The derivative of the CDF FX(x), denoted as fX(x), is called the probability density function (PDF) of the random variable X, i.e. fX(x) = dF(x) dx ; x 2 R1: or, equivalently the CDF can be related to the PDF via: FX(x) = Z x ¡1 fX(u)du; x 2 R1: Note that area under the PDF curve is unity, i.e., Z 1 ¡1 fX(u)du = FX(1) ¡ FX(¡1) = 1 ¡ 0 = 1 In general the probability of a random variable X(s) taking values in the range x 2 [a; b] is given by: Pr(x 2 [a; b]) = Z b a fX(x)dx = FX(b) ¡ FX(a): For discrete random variables the PDF takes the general form: fX(x) = X xi2X(s) pi±(x ¡ xi): Specifically for continuous random variables: Pr(x = xo) = FX(x+ o ) ¡ FX(x¡o ) = 0: 2


What is a fx toolbar in Microsoft Excel?

It is the function toolbar. The fx is a mathematical way of representing functions.It is the function toolbar. The fx is a mathematical way of representing functions.It is the function toolbar. The fx is a mathematical way of representing functions.It is the function toolbar. The fx is a mathematical way of representing functions.It is the function toolbar. The fx is a mathematical way of representing functions.It is the function toolbar. The fx is a mathematical way of representing functions.It is the function toolbar. The fx is a mathematical way of representing functions.It is the function toolbar. The fx is a mathematical way of representing functions.It is the function toolbar. The fx is a mathematical way of representing functions.It is the function toolbar. The fx is a mathematical way of representing functions.It is the function toolbar. The fx is a mathematical way of representing functions.