Wow you really can't spell.
0.5n(n+1)
yes
1, 3, 6, 10, ... The nth term is n*(n+1)/2
It is an expression used in the context of sequences and refers to a way of expressing any term in the sequence using an index or counter. It is often called the nth term.
Oh, dude, it's like a pattern party! So, to find the nth term for this sequence, you first need to figure out the pattern. Looks like each number is decreasing by 2. So, the nth term would be 13 - 2n. Easy peasy, right?
nth term = 5 +8n
0.5n(n+1)
yes
The nth term is 6n+1 and so the next term will be 31
Sn = 3n2 + 2n - 8
1, 3, 6, 10, ... The nth term is n*(n+1)/2
In the study of sequences, given a number n, the position to term rule tells you how the nth term of the sequence is calculated.
the first 4 terms of the sequence which has the nth term is a sequence of numbers that that goe together eg. 8,12,16,20,24 the nth term would be 4n+4
It is an expression used in the context of sequences and refers to a way of expressing any term in the sequence using an index or counter. It is often called the nth term.
The nth term is Un = a + (n-1)*d where a = U1 is the first term, and d is the common difference.
A group of numbers in order. Usually, when talking about sequences, people talk about infinite sequences: a sequence that never ends (it has a first number, a second number, and an Nth number for any N, with no last number). There's no restriction of what the numbers are - they can be anything, and don't have to follow any pattern. But in practice, if you want to talk about a specific sequence, you'd need some rule for calculating the numbers in it. For example, you could have the sequence whose Nth term is 1/N. Sometimes sequences are taken to start with a 0th term rather than a first term. This is a question of notation, and doesn't really change anything about how sequences work. You can also think of a sequence as a function from the natural numbers {1,2,3,...} or {0,1,2,3,...} to whatever the sequence is of (usually real numbers, or sometimes complex numbers). For this reason, sequences are also called arithmetical functions. The most common way to write the nth term of a sequence is an (for one sequence; if you need to talk about more sequences, you'd write bn or cn)
This is an arithmetic sequence with initial term a = 3 and common difference d = 2. Using the nth term formula for arithmetic sequences an = a + (n - 1)d we get an = 3 + (n - 1)(2) = 2n - 2 + 3 = 2n + 1.