I do not believe there are any postulates: they can be proved and therefore are not postulates.
if
A+
It is a theorem, not a postulate, since it is possible to prove it. If two angles and a side of one triangle are congruent to the corresponding angles and side of another triangle then the two triangles are congruent.
Given two lines cut by a transversal, if corresponding angles are congruent, then the lines are parallel.
converse of the corresponding angles postulate
Given two lines cut by a transversal, if corresponding angles are congruent, then the lines are parallel.
If two parallel lines are intersected by a transversal, then the corresponding angles are congruent. This is the transversal postulate. So the answer is the lines would be parallel. This means that the statement is true.
The postulates that involve congruence are the following :SSS (Side-Side-Side) Congruence Postulate - If three sides of one triangle are congruent to three sides of another triangle, then the triangles are congruent.SAS (Side-Angle-Side) Congruence Postulate - If two sides and the included angle of one triangle are congruent to the corresponding parts of another triangle, the triangles are congruent.ASA (Angle-Side-Angle) Congruence Postulate - If two angles and the included side of one triangle are congruent to the corresponding parts of another triangle, the triangles are congruent.The two other congruence postulates are :AA (Angle-Angle) Similarity Postulate - If two angles of one triangle are congruent to two angles of another triangle, the triangles are similar.Corresponding Angles Postulate - If two parallel lines are cut by a transversal, then the pairs of corresponding angles are congruent.
To verify that two triangles are similar, you can use several similarity postulates and theorems. The most common ones include: **AA Similarity Postulate (Angle-Angle Similarity Postulate):** If two angles of one triangle are congruent to two angles of another triangle, then the two triangles are similar. This postulate relies on the similarity of corresponding angles. **SAS Similarity Theorem (Side-Angle-Side Similarity Theorem):** If two pairs of corresponding sides of two triangles are in proportion, and their included angles are congruent, then the two triangles are similar. This theorem involves both sides and angles. **SSS Similarity Theorem (Side-Side-Side Similarity Theorem):** If the corresponding sides of two triangles are in proportion, then the two triangles are similar. This theorem only considers the proportions of the sides. These postulates and theorems are fundamental principles of triangle similarity and are used to establish whether two triangles are indeed similar. Remember that similarity means that the corresponding angles are equal, and the corresponding sides are in proportion.
A transversal is simply any line that passes through two or more coplanar lines each at different points. So picture, if you will, two lines that are clearly not parallel. I can easily construct a transversal that passes through them. HOWEVER, if two parallel lines are intersected by a transversal, then the corresponding angles are congruent. This is called the transversal postulate. If the corresponding angles are congruent, than the lines are parallel. This is the converse of the first postulate. So, the answer to your question is NO, unless the corresponding angles are congruent.
YesFor two triangles to be congruent, their corresponding sides must be of equal length. But for triangles to be similar, they must only have equal angles. For there to be a SAS postulate for similarity, the two corresponding sides would have to be proportionate, not equal. If they were equal, the triangles would be congruent.So, an SAS postulate for similar triangles would mean that two of the sides of the smaller triangle are, for example, half the two corresponding sides of the other triangle. If also the corresponding included angles are equal, then the two triangles would be similar triangles.APEX: similar
When all of their corresponding angles are congruent (in any triangle, in fact) then the triangles are similar. Similarity postulate AAA. (angle-angle-angle)