Best Answer

50%

Q: What is the probability associated with the area to the right of the mean in a normal distribution?

Write your answer...

Submit

Still have questions?

Related questions

z = 1.52 (approx)

No, as you said it is right skewed.

It could be a Gaussian curve (Normal distribution) rotated through a right angle.It could be a Gaussian curve (Normal distribution) rotated through a right angle.It could be a Gaussian curve (Normal distribution) rotated through a right angle.It could be a Gaussian curve (Normal distribution) rotated through a right angle.

The probability mass function is used to characterize the distribution of discrete random variables, while the probability density function is used to characterize the distribution of absolutely continuous random variables. You might want to read more about this at www.statlect.com/prbdst1.htm (see the link below or on the right)

Symmetric

The F-distribution is either zero or positive, so there are no negative values for F. This feature of the F-distribution is similar to the chi-square distribution. The F-distribution is skewed to the right. Thus this probability distribution is nonsymmetrical.

It is 0.839

0.0006 (approx).

It determines the location of the graph: left or right - but not its shape.

It is 0.877

If the population distribution is roughly normal, the sampling distribution should also show a roughly normal distribution regardless of whether it is a large or small sample size. If a population distribution shows skew (in this case skewed right), the Central Limit Theorem states that if the sample size is large enough, the sampling distribution should show little skew and should be roughly normal. However, if the sampling distribution is too small, the sampling distribution will likely also show skew and will not be normal. Although it is difficult to say for sure "how big must a sample size be to eliminate any population skew", the 15/40 rule gives a good idea of whether a sample size is big enough. If the population is skewed and you have fewer that 15 samples, you will likely also have a skewed sampling distribution. If the population is skewed and you have more that 40 samples, your sampling distribution will likely be roughly normal.

100%