cos liverpool are the best team in the world
360 - 75 = 285
A central angle can subtend (form) an arc of a circle. That has an area of 2 x pi x r x (angle A) / 360.
An acute central angle will subtend an acute arc, or one that is less than 1/4 of the whole circle.
A circle subtends 360° . Therefore. if the angle subtended at the centre of a circle by an arc is greater than 180° then this is the major arc. By comparison, the minor arc will subtend an angle less than 180°
To find the measure of angle 5, we can use the relationship between the arcs and the angles they subtend. If angle 5 subtends arc BC, then the measure of angle 5 is half the measure of arc BC. Therefore, angle 5 would measure ( \frac{42}{2} = 21 ) degrees. If angle 5 relates to arc DE, further information is needed to determine its measure.
An arc can be measured either in degree or in unit length. An arc is a portion of the circumference of the circle which is determined by the size of its corresponding central angle. We create a proportion that compares the arc to the whole circle first in degree measure and then in unit length. (measure of central angle/360 degrees) = (arc length/circumference) arc length = (measure of central angle/360 degrees)(circumference) But, maybe the angle that determines the arc in your problem is not a central angle. In such a case, find the arc measure in degree, and then write the proportion to find the arc length.
In a unit circle, the arc length ( s ) is directly equal to the angle ( \theta ) in radians. Therefore, if the arc length of a sector is 3 radians, the measure of the angle of the sector is also 3 radians.
Radian = (180/pi)o
The radian measure IS the arc length of the unit circle, by definition - that is how the radian is defined in the first place.
In a unit circle, the radius is 1, so the arc length ( s ) of a sector can be calculated using the formula ( s = r\theta ), where ( r ) is the radius and ( \theta ) is the angle in radians. Since the radius ( r = 1 ), the formula simplifies to ( s = \theta ). Therefore, if the arc length is 4.2, the measure of the angle of the sector is ( \theta = 4.2 ) radians.
Arc length is equal to radius times the angle the arc subtends (makes) at the centre of the circle, but the angle needs to be in radians. Set your calculator to radians instead of degrees, or, to change degrees to radians, divide by 180 and times pi. The formula comes from the fact that the length of the arc is proportional to the circumference of the circle in the same ratio as the angle at the centre is to the complete revolution at the centre, so length of arc: circumference of circle = angle size : 360o arc/(2*pi*r) = angle in degrees/360 or angle in radians/(2*pi) so arc length is angle in degrees divided by 360, times the circumference of the circle. Answer will be in the same measurement unit as the radius.
it is an arc of an angle that is adjacent