Its an imperial number
Its belong to rational, whole, and integars.
Irrational numbers.
mixed numbers
composite
Rational positive numbers
Not whole numbers. Yes to real numbers and integers.
0 is a integer.
The set of numbers which 3 does not belong is the set of even numbers.
The mathematically correct answer is: any set that contains it. For example, it belongs to the set of all numbers between -3 and +2, the set {0, -3, 8/13, sqrt(97), pi}, the set {0}, the set of the roots of x3 - x2 + x = 0, the set of all integers, the set of all rational numbers, the set of all real numbers, the set of all complex numbers.
10 belongs to the set "natural numbers", but it can also belong to whole numbers, and rational numbers
A set is just a way of describing numbers, and numbers can be described in more than one way. If set A is (for example) all positive prime numbers, and set B is all numbers between 0 and 10, then there are some numbers (2, 3, 5, and 7) that could belong to both sets.
Infinitely many sets: they belong to the set {0, 2, 4, 5, 7, 9}, and to {0, 2, 4, 5, 7, 9, 92} and {0, 2, 3, 4, 5, 7, 9} and {0, 2, 4, 5, 5.35, 7, 9} and {0, 2, 4, 5, 7, sqrt(53), 9} and N0, the set of Natural number including 0, Z, the set of integers, Q, the set of rational numbers, R, the set of real numbers, C, the set of complex numbers as well as any superset of these sets.
Counting numbers
Irrational numbers.
The set of even numbers
It belongs to the set of prime numbers
Rational and Real numbers
rational and prime numbers