2 and 10 or 4 and 5
43
20 and 20
-1540
-2.298 and -8.702 (to 3 dp)
44
95
Let the number 'm' & 'n' Hence # Multiplication mn = - 1344 Added m + n = 43 We have two unknowns , So we eliminate one of them . Hence mn = -1344 m = 43 - n Substitute (43 - n) n = -1344 43n - n^(2) = -1344 n^(2) - 43n - 1344 = 0 We now have quadratic eq;n to solve Hence n = { --43 +/- sqrt[(-43)^(2) - 4(1)(-1344)]} / 2(1) n = { 43 +-/ sqrt[ 1849 + 5376]} / 2 n = { 43 +/-sqrt[ 7225] } / 2 n = { 43 +/- 85}/2 n = 128/2 = 64 & n = - 42/2 = -21 Verification 64 X -21 = -1344 64 - 21 = 43 So the two numbers are '-21' & '64'.
56
2x10, 5x4
125
62
44