Positive correlation is a relationship between two variables in which both variables move in tandem that is in the same direction.
A positive correlation between two variables means that there is a direct correlation between the variables. As one variable increases, the other variable will also increase.
You have a positive correlation.
False.
Either +1 (strongest possible positive correlation between the variables) or -1 (strongest possible negativecorrelation between the variables).
It's not quite possible for the coefficient of determination to be negative at all, because of its definition as r2 (coefficient of correlation squared). The coefficient of determination is useful since tells us how accurate the regression line's predictions will be but it cannot tell us which direction the line is going since it will always be a positive quantity even if the correlation is negative. On the other hand, r (the coefficient of correlation) gives the strength and direction of the correlation but says nothing about the regression line equation. Both r and r2 are found similarly but they are typically used to tell us different things.
Correlation is a measure of the degree to which two variables change together. Positive correlation means that the variables increase together and decrease together. Negative correlation means that one variable increases when the other decreases.Correlation does not imply causality.Correlation is a measure of the degree to which two variables change together. Positive correlation means that the variables increase together and decrease together. Negative correlation means that one variable increases when the other decreases.Correlation does not imply causality.Correlation is a measure of the degree to which two variables change together. Positive correlation means that the variables increase together and decrease together. Negative correlation means that one variable increases when the other decreases.Correlation does not imply causality.Correlation is a measure of the degree to which two variables change together. Positive correlation means that the variables increase together and decrease together. Negative correlation means that one variable increases when the other decreases.Correlation does not imply causality.
If the correlation is positive, as one increases so does the other.
includes both positive and negative terms.
I believe you are asking how to identify a positive or negative correlation between two variables, for which you have data. I'll call these variables x and y. Of course, you can always calculate the correlation coefficient, but you can see the correlation from a graph. An x-y graph that shows a positive trend (slope positive) indicates a positive correlation. An x-y graph that shows a negative trend (slope negative) indicates a negative correlation.
It means that the variables are related in some way; one affects the other.
If the two variables increase together and decrease together AND in a linear fashion, the correlation is positive. If one increases when the other decreases, again, in a linear fashion, the correlation is negative.