answersLogoWhite

0

Because if they stopped they could be expressed as a ratio.

Suppose the decimal expansion of an irrational stopped after x digit AFTER the decimal point.

Now consider the number n, which is the original number, left and right of the decimal, but without the decimal point. This is the nummerator of your ratio. The denominator is 1 followed by x zeros. It is easy to show that this ratio repesents the decimal expansion of the number

User Avatar

Wiki User

14y ago

Still curious? Ask our experts.

Chat with our AI personalities

DevinDevin
I've poured enough drinks to know that people don't always want advice—they just want to talk.
Chat with Devin
EzraEzra
Faith is not about having all the answers, but learning to ask the right questions.
Chat with Ezra
JordanJordan
Looking for a career mentor? I've seen my fair share of shake-ups.
Chat with Jordan

Add your answer:

Earn +20 pts
Q: Why does irrational numbers don't stop?
Write your answer...
Submit
Still have questions?
magnify glass
imp