answersLogoWhite

0

Yes, but the relationship need not be causal.

User Avatar

Wiki User

15y ago

What else can I help you with?

Related Questions

Measure of how closely one thing is related to another?

This is referred to as correlation, which quantifies the strength and direction of the relationship between two variables. The correlation coefficient can range from -1 to 1, where values closer to 1 indicate a strong positive relationship, values close to -1 indicate a strong negative relationship, and a value of 0 indicates no relationship.


What correlation coeficcients expresses weakest degree of relationship?

The correlation coefficient that expresses the weakest degree of relationship is 0. A correlation coefficient of 0 indicates no linear relationship between the two variables being analyzed. Values closer to -1 or +1 indicate stronger negative or positive relationships, respectively. Thus, a coefficient of 0 signifies that changes in one variable do not predict changes in the other.


When is the standard correlation coefficient positive?

Assume that you are correlating two variables x and y. If there is an increasing relationship between x and y, (that is , the graph of y=a+bx, slopes upward), the correlation coefficient is positive. Similarly, if there is a decreasing relationship, the correlation coefficient is negative. The correlation coefficient can assume values only between -1 and 1.


Is 0.5 the strongest correlation coefficient?

No. The strongest correlation coefficient is +1 (positive correlation) and -1 (negative correlation).


Is the slope of a line positive when doing linear regression if the correlation coefficient is negative?

No, the slope of a line in linear regression cannot be positive if the correlation coefficient is negative. The correlation coefficient measures the strength and direction of a linear relationship between two variables; a negative value indicates that as one variable increases, the other decreases. Consequently, a negative correlation will result in a negative slope for the regression line.


Correlation coefficient is the measure of?

Correlation coefficient is a measure of the strength and direction of a relationship between two variables. It quantifies how closely the two variables are related and ranges from -1 (perfect negative correlation) to 1 (perfect positive correlation), with 0 indicating no correlation.


What is a correlation coefficient?

A correlation coefficient is a statistic that measures the strength and direction of a relationship between two variables. It ranges from -1 to 1, with 1 indicating a perfect positive relationship, -1 indicating a perfect negative relationship, and 0 indicating no relationship between the variables.


What is a type of correlation coefficient?

A type of correlation coefficient is the Pearson correlation coefficient, which measures the strength and direction of the linear relationship between two continuous variables. Its value ranges from -1 to 1, where -1 indicates a perfect negative correlation, 1 indicates a perfect positive correlation, and 0 indicates no correlation. Other types include the Spearman rank correlation coefficient, which assesses the relationship between ranked variables, and the Kendall tau coefficient, which measures the ordinal association between two quantities.


What is the meaning of correlation coefficient?

The correlation coefficient takes on values ranging between +1 and -1. The following points are the accepted guidelines for interpreting the correlation coefficient:0 indicates no linear relationship.+1 indicates a perfect positive linear relationship: as one variable increases in its values, the other variable also increases in its values via an exact linear rule.-1 indicates a perfect negative linear relationship: as one variable increases in its values, the other variable decreases in its values via an exact linear rule.Values between 0 and 0.3 (0 and -0.3) indicate a weak positive (negative) linear relationship via a shaky linear rule.Values between 0.3 and 0.7 (0.3 and -0.7) indicate a moderate positive (negative) linear relationship via a fuzzy-firm linear rule.Values between 0.7 and 1.0 (-0.7 and -1.0) indicate a strong positive (negative) linear relationship via a firm linear rule.The value of r squared is typically taken as "the percent of variation in one variable explained by the other variable," or "the percent of variation shared between the two variables."Linearity Assumption. The correlation coefficient requires that the underlying relationship between the two variables under consideration is linear. If the relationship is known to be linear, or the observed pattern between the two variables appears to be linear, then the correlation coefficient provides a reliable measure of the strength of the linear relationship. If the relationship is known to be nonlinear, or the observed pattern appears to be nonlinear, then the correlation coefficient is not useful, or at least questionable.


What does the sign of the correlation coefficient tell you about the association?

Positive correlation = positive association Negative correlation = negative association


What does a correlation coefficient value of negative two indicate?

A mistake in calculations! ;) If the calculations are done correctly then the sample correlation must lie within the closed interval [-1, 1].


What does a correlation coefficient of zero indicates?

A coefficient of zero means there is no correlation between two variables. A coefficient of -1 indicates strong negative correlation, while +1 suggests strong positive correlation.