The zeros of a quadratic function, if they exist, are the values of the variable at which the graph crosses the horizontal axis.
You can easily identify the x-intercepts of a graph of a quadratic function by writing it as two binomial factors! Source: I am in Algebra 2 Honors!
The graph of a quadratic relation is a parobolic.
Yes. A quadratic function can have 0, 1, or 2 x-intercepts, and 0, 1, or 2 y-intercepts.
The wording is confusing, as a quadratic function is normally a function of one variable. If you mean the graph of y = f(x) where f is a quadratic function, then changes to the variable y will do some of those things. The transformation y --> -y will reflect the graph about the x-axis. The transformation y --> Ay (where A is real number) will cause the graph to stretch or shrink vertically. The transformation y --> y+A will translate it up or down.
the graph of a quadratic function is a parabola. hope this helps xP
The zeros of a quadratic function, if they exist, are the values of the variable at which the graph crosses the horizontal axis.
Yes. And the question is ...
The parabola
Some do and some don't. It's possible but not necessary.
The real solutions are the points at which the graph of the function crosses the x-axis. If the graph never crosses the x-axis, then the solutions are imaginary.
That the function is a quadratic expression.
Yes.
A translation.
When the graph of a quadratic crosses the x-axis twice it means that the quadratic has two real roots. If the graph touches the x-axis at one point the quadratic has 1 repeated root. If the graph does not touch nor cross the x-axis, then the quadratic has no real roots, but it does have 2 complex roots.
No. It can also be a circle, ellipse or hyperbola.
The graph of a quadratic equation is called a parabola.The graph of a quadratic equation is called a parabola.The graph of a quadratic equation is called a parabola.The graph of a quadratic equation is called a parabola.