Vertices and the foci lie on the line x =2 Major axis is parellel to the y-axis b > a Center of the ellipse is the midpoint (h,k) of the vertices (2,2) Equation of the ellipse is (x - (2) )^2 / a^2 + (y - (2) )^2 / b^2 Equation of the ellipse is (x-2)^2 / a^2 + (y-2)^2 / b^2 The distance between the center and one of the vertices is b The distance between(2,2) and (2,4) is 2, so b = 2 The distance between the center and one of the foci is c The distance between(2,2) and (2,1) is 1, so c = 1 Now that we know b and c, we can find a^2 c^2=b^2-a^2 (1)^2=(2)^2-a^2 a^2 = 3 The equation of the ellipse is Equation of the ellipse is (x-2)^2 / 3 + (y-2)^2 / 4 =1
yes
An ellipse has two lines of mirror symmetry: the line that includes the two foci of the ellipse and the perpendicular bisector of the segment of that line between the two foci.
true
A randomly deformed circle has no specific name. A circle can be deformed into an ellipse (also known as an oval). An ellipse has two distinct "centres", called foci. The shape consists of the locus of points such that the sum of the distance from these points to the two foci is a constant.
Two foci's are found on a hyperbola graph.
2
2
2
The principal axis of a hyperbola is the straight line joining its two foci.
geometry sorry
An ellipse, a hyperbola.
The answer depends on whether they are the foci of an ellipse or a hyperbola.
A half of a hyperbola is defined as the locus of points such that the distance of the point from one fixed point (a focus) and its distance from a fixed line (the directrix) is a constant that is greater than 1 (the eccentricity). By symmetry, a hyperbola has two foci and two directrices.
The foci (plural of focus, pronounced foh-sigh) are the two points that define a hyperbola: the figure is defined as the set of all points that is a fixed difference of distances from the two points, or foci.
The standard form of the equation of a hyperbola with center at the origin isx2/a2 - y2/b2 = 1 where the transverse axis lies on the x-axis,ory2/a2 - x2/b2 = 1 where the transverse axis lies on the y-axis.The vertices are a units from the center and the foci are c units from the center.For both equations, b2 = c2 - a2. Equivalently, c2 = a2 + b2.Since we know the length of the transverse axis (the distance between the vertices), we can find the value of a (because the center, the origin, lies midway between the vertices and foci).Suppose that the transverse axis of our hyperbola lies on the x-axis.Then, |a| = 24/2 = 12So the equation becomes x2/144 - y2/b2 = 1.To find b we need to know what c is.
the foci (2 focal points) and the distance between the vertices.