answersLogoWhite

0

It depends on what else is known about the sector: length of arc, area or some other measure.

User Avatar

Wiki User

13y ago

What else can I help you with?

Related Questions

How do you find the area of a sector with only radius given?

To find the area of a sector when only the radius is given, you'll need to know the angle of the sector in either degrees or radians. The formula for the area of a sector is ( A = \frac{1}{2} r^2 \theta ), where ( r ) is the radius and ( \theta ) is the angle in radians. If the angle is not provided, the area cannot be determined solely with the radius.


What is the area of sector CED when DE equals 15 yd?

To find the area of sector CED, we need the radius (DE) and the angle of the sector. The area of a sector can be calculated using the formula: Area = (θ/360) × πr², where θ is the angle in degrees and r is the radius. Given that DE equals 15 yards, we would need the angle CED to calculate the area accurately. Without the angle, we cannot determine the area of sector CED.


What is the area of the shaded sector if the circle has a radius of 3 and the central angle is 90 degrees?

Find the area of the shaded sector. radius of 3 ...A+ = 7.07


A sector of a circle has a central angle of 50 and an area of 605 cm2 Find the radius of the circle?

If the sector of a circle has a central angle of 50 and an area of 605 cm2, the radius is: 37.24 cm


A sector of a circle has a central angle of 400 and an area of 300 cm2. Find the radius of the circle?

To find the radius of the circle, we first need to determine the radius of the sector. The area of a sector is given by the formula A = 0.5 * r^2 * θ, where A is the area, r is the radius, and θ is the central angle in radians. In this case, the central angle is 400 degrees, which is approximately 6.98 radians. Plugging in the values, we get 300 = 0.5 * r^2 * 6.98. Solving for r, we find that the radius is approximately 7.67 cm.


What is the approximate area of the shaded sector in the circle below 18cm?

To find the area of a shaded sector in a circle, you need the radius and the angle of the sector. Assuming the radius of the circle is 18 cm, the area of the entire circle is given by the formula (A = \pi r^2), which equals approximately (1017.88 , \text{cm}^2). If you know the angle of the sector in degrees, you can calculate the area of the sector using the formula (A_{sector} = \frac{\theta}{360} \times A_{circle}), where (\theta) is the angle of the sector. Without the angle, I cannot provide the exact area of the shaded sector.


Find the sector area of a sector with radius of 30 and an angle of 60 degrees?

apply this formula: A = t/360 r2 when t = angle at center and r = radius so A = 471.2 (rounded to 1 decimal place)


How do you find the area of a shaded region in a circle?

(pi * radius squared) * ( sector angle / 360 )


How do you find the length of a sector?

The answer depends on what information you do have: radius, arc length, central angle etc.


What is the area of sector CED when DE 15 yd?

To find the area of sector CED, we need the radius and the angle of the sector. If DE is the radius (15 yards), we would also need the angle in degrees or radians to calculate the area using the formula: Area = (θ/360) × πr² for degrees or Area = (1/2)r²θ for radians. Once the angle is provided, we can compute the area accurately. Please provide the angle for a complete calculation.


How do i find the arc length if i know the area?

Use the formula for the area of a circular sector, and solve for the angle.For a circular sector: area = radius squared times angle / 2 (Note: The angle is supposed to be expressed in radians; and in this specific problem, there is no need to convert it to degrees.) Since you know the area and the radius (according to the comments added to this question), you can solve for the angle. Once you know the angle (in radians!), the arc length is simply angle x radius.


What is the area of the shaded sector 12 and 100?

To find the area of a shaded sector, you typically need the radius and the angle of the sector in degrees or radians. However, your question provides two numbers, 12 and 100, without context. Assuming 12 is the radius and 100 is the angle in degrees, the area of the sector can be calculated using the formula ( \text{Area} = \frac{\theta}{360} \times \pi r^2 ). Plugging in the values, the area would be approximately 25.13 square units.