answersLogoWhite

0

The coefficients in a rational expression would be rational numbers.

User Avatar

Wiki User

13y ago

Still curious? Ask our experts.

Chat with our AI personalities

LaoLao
The path is yours to walk; I am only here to hold up a mirror.
Chat with Lao
ViviVivi
Your ride-or-die bestie who's seen you through every high and low.
Chat with Vivi
JudyJudy
Simplicity is my specialty.
Chat with Judy

Add your answer:

Earn +20 pts
Q: How would you differentiate rational algebraic expressions from those which are not?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Algebra

Is the number 6 rational or irrational?

'6' is RATIONAL. Casually IRRATIONAL numbers are those that have decimals going to infinity AND the decimal digits are NOT in any regular order. 'pi' = 3.141592.... is the most well known irrational number. However, 3.3333... is RATIONAL becaause the decimal digits are in a regular order of '3'.


Is -67 a irrational number?

NO!!! It is rational . Irrational numbers are those were the decimals go to infinity AND there is no regular order in the decimnal digits. pi = 3.141592..... is the most well known IRRATIONAL number. However, a number such as 0.676767.... is rational, because the digits are in a regular order, although it goes to infinity.


What is a rational algebraic expression?

A rational number is any number that can be written in the form a/b, where a and b are integers and b ≠ 0. it is necessary to exclude 0 because the fraction represents a ÷ b, and division by zero is undefined.A rational expression is an expression that can be written in the form P/Q where P and Q are polynomials and the value of Q is not zero.Some examples of rational expressions:-5/3; (x^2 + 1)/2; 7/(y -1); (ab)/c; [(a^2)(b]/c^2; (z^2 + 3z + 2)/ (z + 1) ect.Like a rational number, a rational expression represents a division, and so the denominator cannot be 0. A rational expression is undefined for any value of the variable that makes the denominator equal to 0. So we say that the domain for a rational expression is all real numbers except those that make the denominator equal to 0.Examples:1) x/2Since the denominator is 2, which is a constant, the expression is defined for all real number values of x.2) 2/xSince the denominator x is a variable, the expression is undefined when x = 03) 2/(x - 1)x - 1 ≠ 0x ≠ 1The domain is {x| x ≠ 1}. Or you can say:The expression is undefined when x = 1.4) 2/(x^2 + 1)Since the denominator never will equal to 0, the domain is all real number values of x.


Definition of rational algebraic expression?

A rational number is any number that can be written in the form a/b, where a and b are integers and b ≠ 0. it is necessary to exclude 0 because the fraction represents a ÷ b, and division by zero is undefined.A rational expression is an expression that can be written in the form P/Q where P and Q are polynomials and the value of Q is not zero.Some examples of rational expressions:-5/3; (x^2 + 1)/2; 7/(y -1); (ab)/c; [(a^2)(b]/c^2; (z^2 + 3z + 2)/ (z + 1) ect.Like a rational number, a rational expression represents a division, and so the denominator cannot be 0. A rational expression is undefined for any value of the variable that makes the denominator equal to 0. So we say that the domain for a rational expression is all real numbers except those that make the denominator equal to 0.Examples:1) x/2Since the denominator is 2, which is a constant, the expression is defined for all real number values of x.2) 2/xSince the denominator x is a variable, the expression is undefined when x = 03) 2/(x - 1)x - 1 ≠ 0x ≠ 1The domain is {x| x ≠ 1}. Or you can say:The expression is undefined when x = 1.4) 2/(x^2 + 1)Since the denominator never will equal to 0, the domain is all real number values of x.


Is 0.6 a rational number or an irrational number?

Rational because you can coinvert it to a ratio(fraction). 0.6 = 6/10 = 3/5 NB Irrational numbers are those that cannot be converted to a fraction. e,g, pi = 3.1415692.... or sqrt(2) = 1.414213562.... There are many more irrational numbers.