answersLogoWhite

0

The assertion is true.

Let A be an idempotent matrix. Then we have A.A=A. Since A is invertible, multiplying A-1 to both sides of the equality, we get A = I.

Q. E. D

User Avatar

Wiki User

14y ago

What else can I help you with?

Related Questions

Is a singular matrix an indempotent matrix?

A singular matrix is a matrix that is not invertible. If a matrix is not invertible, then:• The determinant of the matrix is 0.• Any matrix multiplied by that matrix doesn't give the identity matrix.There are a lot of examples in which a singular matrix is an idempotent matrix. For instance:M =[1 1][0 0]Take the product of two M's to get the same M, the given!M x M = MSo yes, SOME singular matrices are idempotent matrices! How? Let's take a 2 by 2 identity matrix for instance.I =[1 0][0 1]I x I = I obviously.Then, that nonsingular matrix is also idempotent!Hope this helps!


What is an idempotent give examples of idempotent matrix.?

An idempotent is a matrix whose square is itself. Specifically, A^{2}=A. For example the 2x2 matrix A= 1 1 0 0 is idempotent.


What is an idempotent give examples of idempotent matrix?

An idempotent is a matrix whose square is itself. Specifically, A^{2}=A. For example the 2x2 matrix A= 1 1 0 0 is idempotent.


What is idempotent matrix?

An idempotent matrix is a matrix which gives the same matrix if we multiply with the same. in simple words,square of the matrix is equal to the same matrix. if M is our matrix,then MM=M. then M is a idempotent matrix.


What is the definition of an idempotent matrix?

A square matrix A is idempotent if A^2 = A. It's really simple


Is idempotent matrix a square matrix?

A square matrix K is said to be idempotent if K2=K.So yes K is a square matrix


What is the determinant of an idempotent matrix?

0 or 1


If matrix a is invertible and a b is invertible and a 2b a 3b and a 4b are all invertible how can you prove that a 5b is also invertible?

What is "a 3b"? Is it a3b? or a+3b? 3ab? I think "a3b" is the following: A is an invertible matrix as is B, we also have that the matrices AB, A2B, A3B and A4B are all invertible, prove A5B is invertible. The problem is the sum of invertible matrices may not be invertible. Consider using the characteristic poly?


What is the Square root of a matrix?

The idempotent matrix is also called square root of a matrix. i.e.)A2=A


How do you prove if the determinant of A is not equal to zero then the matrix A is invertible?

To prove that a matrix ( A ) is invertible if its determinant ( \det(A) \neq 0 ), we can use the property of determinants related to linear transformations. If ( \det(A) \neq 0 ), it implies that the linear transformation represented by ( A ) is bijective, meaning it maps ( \mathbb{R}^n ) onto itself without collapsing any dimensions. Consequently, there exists a matrix ( B ) such that ( AB = I ) (the identity matrix), confirming that ( A ) is invertible. Thus, the non-zero determinant serves as a necessary and sufficient condition for the invertibility of the matrix ( A ).


Define an indempotent matrix?

The phrase "idempotent matrix" is an algebraic term. It is defined as a matrix that equals itself when multiplied by itself.


What are the differences between an idempotent matrix and a generalized inverse of a matrix?

Idempotent Matrix:An idempotent matrix, A, is the specific periodic matrix (see note) where k=1, thus having the property A2=A (we can also say A.A=A).Inverse Matrix:Given a square matrix, A, its inverse is B if AB=BA.Note:A periodic matrix, A, has the property Ak+1=A where k is a positive integer. If k is the least positive integer for which Ak+1=A, then A is said to be of period k.