answersLogoWhite

0


Best Answer

To add or subtract two numbers in scientific notation:

Step 1: Adjust the powers of 10 in the 2 numbers so that they have the same index. (Tip: It is easier to adjust the smaller index to equal the larger index).

Step 2 : Add or subtract the numbers.

Step 3 : Give the answer in scientific notation.


To divide numbers in scientific notation:

Step 1 : Group the numbers together.

Step 2 : Divide the numbers.

Step 3 : Use the law of indices to simplify the powers of 10.

Step 4 : Give the answer in scientific notation.


To multiply numbers in scientific notation:

1. Multiply the coefficients
2. Add the exponents

www.onlinemathlearning.com/adding-scientific-notation.html
http://www.onlinemathlearning.com/dividing-scientific-notation.html
http://www.onlinemathlearning.com/scientific-notation.html
User Avatar

Wiki User

15y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: Steps multiplying and adding scientific notation?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Algebra

How do you round to a significant figure?

When adding or subtracting, follow these steps to find a sig figs answer: 1) Add/Subtract numbers regularly. 2) Determine which measurement has the least decimal places. 3) Round final answer to the same number of decimal places. When multiplying or dividing, follow these: 1) Count the number of sig figs in the numbers you are multiplying/dividing. 2) Multiply/Divide regularly. 3) Round final answer to the same number of sig figs as the measurement with the fewest sig figs.


Show steps of how to solve- 10 of 90?

show how to solve -2X-4<10 -2X<14 X>-7 (you must change the sign when multiplying or dividing by negatives) Not sure what show steps of how to solve- 10 of 90 means


What are the steps in writing number in scientific notation?

1.Look at the number and note where the decimal point is located 2. If it is a whole number the decimal point is at the end 3. move the decimal point to the left and place just after the first number 4. count the number of places you moved the decimal 5. The scientific notation is the number in step 3 times 10 to the power of step 4 Example: 6,000,000 = 6 times 10 to the sixth power 4,910,000.1 = 4.9100001 times ten to the sixth power 59,100 = 5.91 times ten tot he fifth power


A series of steps scientists follow to solve problems?

The scientific method is what scientist use to solve problems.


What are the basic steps of problem solving in math what are the importance of following these steps when presented a problem?

what are the basic steps of problem solving in algebra and what are the importance of following these steps when presented in a problem.

Related questions

What are the steps of the scientific notation in order?

The steps, in order, will depend on what you wish to do: convert from normal to scientific notation, the converse, perform one of the basic operations of arithmetic on numbers in scientific notation.


What are the steps to the scientific notation?

Steps in scientific notation 1. Identify the location of the decimal point. 2. Move the decimal point, stop moving after 1st none zero digit, stop moving the non zero digit, 3. Identify the multiplying factor 4. Identify the exponent


What are the basic steps in solving scientific notation?

Scientific notation is not a problem that needs to be "solved".


What steps to do to get 0.006 in scientific notation?

6 x 10-3.


What are the 7 steps of scientific notation?

There are not seven steps unless you start counting steps like "pick up pen"! Three steps is all that it takes.


What is the fourth step in scientific notation?

The answer depends on which steps you consider to be the first three. The sequence can vary.


What are rules of adding subtracting dividing multiplying scientific notation?

Addition and Subtraction in Scientific NotationA number written in scientific notation is written as the product of a number between 1 and 10 and a number that is a power of 10. That is, it is written as a quantity whose coefficient is between 1 and 10 and whose base is 10.Addition and SubtractionOne of the properties of quantities with exponents is that numbers with exponents can be added and subtracted only when they have the same base and exponent. Since all numbers in scientific notation have the same base (10), we need only worry about the exponents. To be added or subtracted, two numbers in scientific notation must be manipulated so that their bases have the same exponent--this will ensure that corresponding digits in their coefficients have the same place value.Multiplying a number by another number with the same base is equivalent to multiplying their coefficients and adding their exponents. Therefore, if we want to add two quantities written in scientific notation whose exponents do not match, we can simply write one of the powers of 10 as the product of two smaller powers of 10 , one of which agrees with the other term.Alternately, if we want to preserve the exponent of the term with the larger power of 10 , we can simultaneously multiply and divide the other term by a power of 10 , applying the rule for multiplication of exponents in one case and dividing the coefficient in the other. It is this procedure that we outline below. Once the numbers have the same base and exponents, we can add or subtract their coefficients.Here are the steps to adding or subtracting numbers in scientific notation :1. Determine the number by which to increase the smaller exponent by so it is equal to the larger exponent.2. Increase the smaller exponent by this number and move the decimal point of the number with the smaller exponent to the left the same number of places. (i.e. divide by the appropriate power of 10 .)3. Add or subtract the new coefficients.4. If the answer is not in scientific notation (i.e. if the coefficient is not between 1 and 10) convert it to scientific notation.Multiplication and Division in Scientific Notation Multiplication and DivisionQuantities with exponents can be multiplied and divided easily if they have the same base. Since all number in scientific notation have base 10 , we can always multiply them and divide them.To multiply two numbers in scientific notation, multiply their coefficients and add their exponents. To divide two numbers in scientific notation, divide their coefficients and subtract their exponents. In either case, the answer must be converted to scientific notation.Here are the steps to multiply two numbers in scientific notation:1. Multiply the coefficients--round to the number of significant figures in the coefficient with the smallest number of significant figures.2. Add the exponents.3. Convert the result to scientific notation.Here are the steps to divide two numbers in scientific notation:1. Divide the coefficients--round to the number of significant figures in the coefficient with the smallest number of significant figures.2. Subtract the exponents.3. Convert the result to scientific notation.


What are the rules in adding subtracting multiplying dividing scientific notation?

Addition and Subtraction in Scientific NotationA number written in scientific notation is written as the product of a number between 1 and 10 and a number that is a power of 10 . That is, it is written as a quantity whose coefficient is between 1 and 10 and whose base is 10 .Addition and SubtractionOne of the properties of quantities with exponents is that numbers with exponents can be added and subtracted only when they have the same base and exponent. Since all numbers in scientific notation have the same base (10), we need only worry about the exponents. To be added or subtracted, two numbers in scientific notation must be manipulated so that their bases have the same exponent--this will ensure that corresponding digits in their coefficients have the same place value.Multiplying a number by another number with the same base is equivalent to multiplying their coefficients and adding their exponents. Therefore, if we want to add two quantities written in scientific notation whose exponents do not match, we can simply write one of the powers of 10 as the product of two smaller powers of 10 , one of which agrees with the other term.Alternately, if we want to preserve the exponent of the term with the larger power of 10 , we can simultaneously multiply and divide the other term by a power of 10 , applying the rule for multiplication of exponents in one case and dividing the coefficient in the other. It is this procedure that we outline below. Once the numbers have the same base and exponents, we can add or subtract their coefficients.Here are the steps to adding or subtracting numbers in scientific notation :1.Determine the number by which to increase the smaller exponent by so it is equal to the larger exponent.2.Increase the smaller exponent by this number and move the decimal point of the number with the smaller exponent to the left the same number of places. (i.e. divide by the appropriate power of 10 .)3.Add or subtract the new coefficients.4.If the answer is not in scientific notation (i.e. if the coefficient is not between 1 and 10 ) convert it to scientific notation.Multiplication and Division in Scientific NotationMultiplication and DivisionQuantities with exponents can be multiplied and divided easily if they have the same base. Since all number in scientific notation have base 10 , we can always multiply them and divide them.To multiply two numbers in scientific notation, multiply their coefficients and add their exponents. To divide two numbers in scientific notation, divide their coefficients and subtract their exponents. In either case, the answer must be converted to scientific notation.Here are the steps to multiply two numbers in scientific notation:1.Multiply the coefficients--round to the number of significant figures in the coefficient with the smallest number of significant figures.2.Add the exponents.3.Convert the result to scientific notation.Here are the steps to divide two numbers in scientific notation:1.Divide the coefficients--round to the number of significant figures in the coefficient with the smallest number of significant figures.2.Subtract the exponents.3.Convert the result to scientific notation.


What are the steps for subtracting scientific notation?

6.022 X 1023 - 6.022 X 1022 = 5.419 X 1023 ======================


What are the steps of converting from scientific notation to standard form?

This question is impossible to answer since, in the UK, the two things are exactly the same! So the steps are: sit back, do nothing!


What is 48 times 144?

48 times 144 is equal to 6,912. This can be calculated by multiplying 48 by 144, which is the same as adding 48 to itself 144 times. To simplify this calculation, you can break it down into smaller, more manageable steps, such as multiplying 48 by 10 (480) and then by 4 (192), and adding these results together to get the final answer of 6,912.


Enumerate the steps of the scientific methods?

enumerate the steps of scientific method