answersLogoWhite

0

It is true that a rational function is a function whose equation contains a rational expression. This is used in various math classes.

User Avatar

Wiki User

11y ago

What else can I help you with?

Related Questions

A rational function is a function whose equation contains?

a rational expression.


A rational function is a function whose equation contains a rational expression?

True


A function whose equation contains a rational expression is known as?

a ractional function


If the equation of a function is a rational expression the function is rational?

True


The equation of a rational function does not have to contain a rational expression?

false


Is the equation of a rational function does not have to contain a rational expression true?

Yes.


If the equation of a function is a rational expression the function is rational.?

Yes. Rational functions must contain rational expressions in order to be rational.


If the equation of a function is a rational expression is the function rational?

Yes. Rational functions must contain rational expressions in order to be rational.


If the equation of a rational function is a rational expression is the function rational?

Yes. Rational functions must contain rational expressions in order to be rational.


Is an equation that contains one or more rational expressions?

Yes, an equation that contains one or more rational expressions is called a rational equation. A rational expression is a fraction where the numerator and/or denominator are polynomials. For example, the equation (\frac{x + 1}{x - 2} = 3) is a rational equation because it includes the rational expression (\frac{x + 1}{x - 2}). Solving such equations often involves finding a common denominator and addressing any restrictions on the variable to avoid division by zero.


Is a rational exponent equation?

No, it is an expression, not an equation.


What is The equation of a rational function does not have to contain a rational expression?

A rational function is defined as a function that can be expressed as the quotient of two polynomials. However, it can also be represented in forms that do not explicitly show a rational expression, such as a polynomial or a constant function, which can be thought of as a rational function with a denominator of 1. For example, the function ( f(x) = 3x^2 + 2 ) is a polynomial and can be considered a rational function because it can be rewritten as ( f(x) = \frac{3x^2 + 2}{1} ). Thus, while the standard form includes a rational expression, the definition encompasses more than just explicit fractions.