The slope of a line and the perpendicular to that line, when multiplied together, give -1.
So, if the first line has a slope of 1/21, the second has a slope of -21.
The slope of a perpendicular line is not defined.
-(1/3)
If two nonvertical lines are perpendicular, then the product of their slope is -1.An equivalent way of stating this relationship is to say that one line is perpendicular to another line if its slope is the negative reciprocal of the slope of the other. For example, if a line has slope 3, any line having slope - 1/3 is perpendicular to it. Similarly, if a line has slope - 4/5, any line having the slope 5/4 is perpendicular to it.
They are negative reciprocals. So if the slope of a line is x, the slope of the perpendicular line is -1/x
The slope of two lines are perpendicular only if their slopes multiplied together equal -1 (m1*m2 = -1). So if a line has a slope of -3 then a line perpendicular to this one has a slope of -1/-3 or 1/3.
No, parallel lines have exactly same slope Perpendicular line have a slope that is negative reciprocal of each other that is if m = slope of line then slope of perpendicular line is -1/m
The slope of a perpendicular line is not defined.
If two lines are perpendicular, the slope of one line is the negative reciprocal of the slope of the other line. This means that if one line has a slope of ( m ), the other line's slope will be ( -\frac{1}{m} ). For example, if one line has a slope of 2, the slope of the perpendicular line will be -(\frac{1}{2}). This relationship ensures that the two lines intersect at a right angle.
-(1/3)
This statement is incorrect. If two lines are perpendicular, their slopes are negative reciprocals of each other. This means that if one line has a slope of ( m ), the other line will have a slope of ( -\frac{1}{m} ). Thus, perpendicular lines intersect at right angles, rather than having the same slope.
For any two perpendicular lines (save a vertical and a horizontal one), the product of their slopes is always -1. For two perpendicular lines with one having a slope of -2, the other will have a slope equal to -1 divided by -2, which equals 1/2.
If two nonvertical lines are perpendicular, then the product of their slope is -1.An equivalent way of stating this relationship is to say that one line is perpendicular to another line if its slope is the negative reciprocal of the slope of the other. For example, if a line has slope 3, any line having slope - 1/3 is perpendicular to it. Similarly, if a line has slope - 4/5, any line having the slope 5/4 is perpendicular to it.
They are negative reciprocals. So if the slope of a line is x, the slope of the perpendicular line is -1/x
They are the negative reciprocal of each other. Fo rexample, if a line has slope = +2, then the line perpendicular to it has slope -1/2
The product of the slopes of two perpendicular lines is always -1. If one line has a slope of ( m_1 ) and the other has a slope of ( m_2 ), the relationship can be expressed as ( m_1 \cdot m_2 = -1 ). This means that if you know the slope of one line, you can find the slope of the perpendicular line by taking the negative reciprocal of that slope.
Th opposite reciprocal. So if one line has a slope of 2 then the other line will have a slope of -1/2
-1