answersLogoWhite

0

Simultaneous equation

User Avatar

Wiki User

13y ago

Still curious? Ask our experts.

Chat with our AI personalities

BlakeBlake
As your older brother, I've been where you are—maybe not exactly, but close enough.
Chat with Blake
FranFran
I've made my fair share of mistakes, and if I can help you avoid a few, I'd sure like to try.
Chat with Fran
DevinDevin
I've poured enough drinks to know that people don't always want advice—they just want to talk.
Chat with Devin

Add your answer:

Earn +20 pts
Q: Two or more linear equations together form a?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Algebra

What is the definition of Simultaneous Linear Equations?

A system of linear equations is two or more simultaneous linear equations. In mathematics, a system of linear equations (or linear system) is a collection of linear equations involving the same set of variables.


Is this statement true or false A system of linear equations is a set of two or more equations with the same variables and the graph of each equation is a line?

The statement "A system of linear equations is a set of two or more equations with the same variables and the graph of each equation is a line" is true.


Can a system of linear equation have more than one solutions?

No. A linear equation represents a straight line and the solution to a set of linear equations is where the lines intersect; two straight lines can only intersect at most at a single point - two straight lines may be parallel in which case they will not intersect and there will be no solution. With more than two linear equations, it may be that they do not all intersect at the same point, in which case there is no solution that satisfies all the equations together, but different solutions may exist for different subsets of the lines.


Why are there usually two solutions to a quadratic equation?

In the graph of a quadratic equation, the plotted points form a parabola. This parabola usually intersects the X axis at two different points. Those two points are also the two solutions for the quadratic equation. Alternatively: Quadratic equations are formed by multiplying two linear equations together. Each of the linear equations has one solution - multiplying two together means that the solution for either is also a solution for the quadratic equation - hence you get two possible solutions for the quadratic unless both linear equations have exactly the same solution. Example: Two linear equations : x - a = 0 x - b = 0 Multiplied together: (x - a) ( x - b ) = 0 Either a or b is a solution to this quadratic equation. Hence most often you have two solutions but never more than two and always at least one solution.


What are 2 symbolic techniques used to solve linear equations and which is better?

There are more than two methods, and of these, matrix inversion is probably the easiest for solving systems of linear equations in several unknowns.