answersLogoWhite

0

Those words refer to the degree, or highest exponent that modifies a variable, or the polynomial.

Constant=No variables in the polynomial

Linear=Variable raised to the first power

Quadratic=Variable raised to the second power (or "squared")

Cubic=Variable raised to the third power (or "cubed")

Quartic=Variable raised to the fourth power

Quintic=Variable raised to the fifth power

Anything higher than that is known as a "6th-degree" polynomial, or "21st-degree" polynomial. It all depends on the highest exponent in the polynomial. Remember, exponents modifying a constant (normal number) do not count.

User Avatar

Wiki User

14y ago

Still curious? Ask our experts.

Chat with our AI personalities

RafaRafa
There's no fun in playing it safe. Why not try something a little unhinged?
Chat with Rafa
ReneRene
Change my mind. I dare you.
Chat with Rene
LaoLao
The path is yours to walk; I am only here to hold up a mirror.
Chat with Lao

Add your answer:

Earn +20 pts
Q: What are quadratic polynomial quartic polynomial constant polynomial and quintic polynomial?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Algebra

Classification of polynomial according to the number of terms?

Polynomials can be classified based on the number of terms they contain. A polynomial with one term is called a monomial, such as 5x or -2y^2. A polynomial with two terms is called a binomial, like 3x + 2 or 4y - 7. A polynomial with three terms is called a trinomial, for example, 2x^2 + 5x - 3. Polynomials with more than three terms are simply referred to as polynomials.


What is a polynomial with four terms?

First off, it is NOT A QUINTIC! Typically a polynomial of four or more terms is called "a polynomial of n terms", where n is the number of terms. Only the one, two, and three term polynomials are referred to by a particular naming convention.


Determine the maximum or minimum value of y-3x2 12x-7 by completing the square?

Every polynomial defines a function, often called P. Linear and and quadratic function belong to a family of functions known as polynomial functions, which often are called P(x). When P(x) = 0, we call it an equation. Any value of x for which P(x) = 0 is a root of the equation and a zero of the function. Polynomials of the first few degrees have a special names such as:Degree 0: Constant functionDegree 1: Linear functionDegree 2: Quadratic functionDegree 3: Cubic functionDegree 4: Quartic functionDegree 5: Quintic functionSo, if we work a little bit to the given expression, we can turn it in a polynomial function of the second degree.y - 3x^2 = 12x - 7y - 3x^2 + 3x^2 = 12x - 7 + 3x^2y = 3x^2 + 12x - 7Let's write y = f(x) and f(x) = 3x^2 + 12x - 7, where a = 3, b = 12, and c = -7.Since a > 0, the parabola opens upward, so we have a minimum value of the function. The maximum or minimum value of the quadratic function occurs at x = -(b/2a).x = -12/6 = -2To find the minimum value of the function, which is also the y-value, we will find f(-2).f(-2) = 3(-2)^2 + 12(-2) - 7f(-2) = 12 - 24 - 7 = -19Thus the minimum value of the function is -19, and the vertex is (-2, -19)To find zeros, we solve f(x) = 0. So,f(x) = 3x^2 + 12x - 7f(x) = 03x^2 + 12x - 7 = 0 In order to solve this equation by completing the square, we need the constant term on the right hand side;3x^2 + 12x = 7 Add the square of one half of the coefficient of x to both sides, (6^2)3x^2 +12x + 36 = 7 + 36 Use the formula (a + b)^2 = a^2 + 2ab + b^2;(3x + 6)^2 = 43 Take the square root of both sides, and solve for x;3x + 6 = (+ & -)square root of 433x + 6 = (+ & -)(square root of 43) Subtract 6 to both sides;3x = (+ & -)(square root of 43) - 6 Divide both sides by 3;x = (square root of 43)/3 - 2 or x = -(square root of 43)/3 - 2The solution are (square root of 43) - 2 and -(square root of 43) - 2


What is this pattern rule for this pattern 21-66-42-61-84-56?

The numbers fit the quintic function: t(n) = (27n5 - 556n4 + 4253n3 - 14876n2 + 23440n - 11784)/24 for n = 1, 2, 3, etc