step 1 first u should seclect the name independent and dependent veriables
2. take X axis ur independent veriable and Yaxis as a dependent veriable
3.lable the axis with units
4. now draw all points on the paper
5.connect first and last point of the reading
6. make sure that u have slected a suitabe scale for drawing the graph of a complecated data
Arrange the inequality so that the variable is on the left. ex x < 7 If not equal to put an open circle at the number (7 in my example) if less than shade the number line to the left ( less than = shade left) if greater than shade right. If equal to put a point ( shaded dot) on the number follow same rules for shading
is -4 a polynomial? This depends on what you accept as a definition A polynomial is often defined as a set of things in order obeying certain rules. ( these things and rules can be very complicated) A polynomial EQUATION is an equation between two polynomials When using only real numbers and "regular" math rules -4 is a polymomial of degree 0 x = -4 is a polynomial equation is a polynomial of degree 1 it is the same as x +4 = 0 It can be represented by { 4, 0} Sometimes the terms are used interchangably
The rules of algebra: more specifically, it is the the existence of a multiplicative inverse for all non-zero values.
Yes, taking the reciprocal (raising each side to the -1 power) of each side of a compound inequality can flip the signs of the inequality. This can be useful when you have an inequality with 'x' in the quotient. Taking the reciprocal of each side can be a more direct way of solving the inequality than multiplying each side by 'x'. The following is an example: | 2/x - 2 | < 4 Following the rules for an absolute value inequality we obtain the following compound inequality: -4 < 2/x - 2 < 4 Next add 2 to each side to get 'x' by itself. -2 < 2/x < 6 Here we can multiply each side by 'x' to deal with 'x' in the quotient, but instead we'll raise each side to an exponent of (-1). We obtain the following: -1/2 > x/2 > 1/6 (Notice the signs flip.) We rewrite as: 1/6 < x/2 < -1/2 Next multiply each side by 2 to get 'x' by itself. 1/3 < x < -1 Our solution set is the following: {x: x > 1/3 OR x < -1} Which is the union of the two infinite intervals (-infinity, -1) AND (1/3, infinity). For these types of inequalities if we believe that perhaps we've made a mistake or that our signs are wrong, we can check our work by plugging in some values for x and evaluating the inequality to see whether or not the statement is true. It helps to graph the inequality on a line and by evaluating x at different points on the graph of our inequality for the values of x that make our statement true; we can see exactly what the inequality looks like. For example, we will evaluate the original inequality with points that are less than -1, in between -1 and 1/3, and greater than 1/3. We'll try x = -2 first, |2/(-2) - 2| < 4 |-1-2| < 4 |-3| < 4 -(-3) < 4 3 < 4 True, our solution: x < -1 holds true. Next we'll solve for x = -1/2, |2/(-1/2) - 2| < 4 |-4 - 2| < 4 |-6| < 4 -(-6) < 4 6 < 4 False, this point is not on the graph of our inequality, so we know that the sign of our solution: x < -1 is going in the right direction and holds true. Next we'll solve for x = 1/4, |2/(1/4) -2| < 4 |8 - 2| < 4 |6| < 4 6 < 4 False, this point is not on the graph of our inequality, so it looks like our second solution x > 1/3 is accurate and our sign is most likely going in the correct direction. Lastly, we'll evaluate for a point x > 1/3 and this point should be on the graph of our inequality. |2/(1) - 2| < 4 |2-2| < 4 |0| < 4 0 < 4 True, we've proved that our solution x > 1/3 holds true for the graph of this inequality and that the sign for our solution is going in the correct direction. In fact if we substitute a very large number in for x, say 1,000 we'll notice the left side of our statement gets closer and closer to 2 as x approaches infinity. |2/(1000) -2| < 4 |-1.998| < 4 -(-1.998) < 4 1.998 < 4 True, we know for certain that the solution x > 1/3 holds true for all values of x to infinity. Our solution set again is, {x: x < -1 or x > 1/3} The union of the two infinite intervals is (-infinity, -1) and (1/3, infinity).
recursive rules need the perivius term explicit dont
1. Make it as simple as possible 2. Find your x, or whatever variable you are using 3. Be careful when graphing, the curves and axes intercepts should be accurate
The basic rules to solve equations are to isolate the variable on one side of the equation by performing the same operation on both sides. This includes adding or subtracting the same value, multiplying or dividing by the same value, and applying exponent or logarithm rules if necessary. The goal is to simplify the equation until the variable is alone on one side and the solution can be determined.
Arrange the inequality so that the variable is on the left. ex x < 7 If not equal to put an open circle at the number (7 in my example) if less than shade the number line to the left ( less than = shade left) if greater than shade right. If equal to put a point ( shaded dot) on the number follow same rules for shading
There needs to be at least 5 points on the graph for an accurate line, and you must label the line the original equation, which you put right next to the line. Plus, you have to draw little arrows on both ends of the line if the domain of the equation is not restricted. If it is restricted, for example, y > 4, then you make a ray, and only draw an arrow on one end of the line.
The Accounting Principles are the assenition rules of accounting and the application of these rules, method & procedures to actual practice of accounting. These Accounting principles have been.The basic principle of accounting is to identify, record, and communicate financial transactions. The simple form of the basic accounting equation is assets equals liabilities plus equity.
rules and guidelines for individual or group behavior
It means that the dimensions of all terms agree with the basic rules of mathematical operations. It also means that only terms with the same dimensions are added or subtracted.
Basic elements of effective communication are clear, its interpersonal. Basic rules of health care communication are deemed as being collaborative efforts.
OHKAY!
A term may be moved from one side of an equation to the other if the sign of the term in changed from plus to minus or vice versa after the move. Note that this follows from the more basic rule that an equation is not changed by adding the same term to each side. Transposing a term and changing its sign is equivalent to adding the positive/negative counterpart of the term to be transposed to each side of the equation.
Morality is the term that describes the basic rules of right and wrong that guide human behavior and decision-making.
The basic company rules and regulations are quite simple. One must be loyal to the company and serve its customers to the best of their ability.