Suppose we have two linear equations in two unknowns. If the equations are plotted on a rectangular grid, the graph will fit one of these scenarios: 1) The two lines cross each other (intersect). 2) The two lines don't cross - they are parallel lines 3) The two lines fall on top of each other - they're really the same line. In case 3) the two lines are dependent - one can be changed into the other. In cases 1) and 2) we say the lines are independent. If the pair of equations has a solution (one or more points in common) we say they are consistent ... cases 1) and 3). In case 2) the system is inconsistent; there is no solution. To summarize: 1) Intersecting lines are consistent and independent. 2) Parallel lines are inconsistent and independent. 3) Coincident ["happen together"] lines are consistent and dependent. *** A second order linear system CANNOT be both dependent and inconsistent.
That doesn't apply to "an" equation, but to a set of equations (2 or more). Two equations are:* Inconsistent, if they have no common solution (a set of values, for the variables, that satisfies ALL the equations in the set). * Consistent, if they do. * Dependent, if one equation can be derived from the others. In this case, this equation doesn't provide any extra information. As a simple example, one equation is the same as another equation, multiplying both sides by a constant. * Independent, if this is not the case.
To solve a system means to find the x- and y-values for which both of the equations are true. Systems of linear equations can be solved using a variety of methods. One method is to graph the equations as two lines and examine them. If the lines intersect at exactly one point, there is one solution to the system, and the system is called consistent. If the two lines are on top of one another, there are an infinite number of solutions, because each point on the line is considered a solution (this system is called dependent). If the two lines are parallel, there is no solution (this system is called inconsistent). To solve a system means to find the x- and y-values for which both of the equations are true. Systems of linear equations can be solved using a variety of methods. One method is to graph the equations as two lines and examine them. If the lines intersect at exactly one point, there is one solution to the system, and the system is called consistent. If the two lines are on top of one another, there are an infinite number of solutions, because each point on the line is considered a solution (this system is called dependent). If the two lines are parallel, there is no solution (this system is called inconsistent). To solve a system means to find the x- and y-values for which both of the equations are true. Systems of linear equations can be solved using a variety of methods. One method is to graph the equations as two lines and examine them. If the lines intersect at exactly one point, there is one solution to the system, and the system is called consistent. If the two lines are on top of one another, there are an infinite number of solutions, because each point on the line is considered a solution (this system is called dependent). If the two lines are parallel, there is no solution (this system is called inconsistent). To solve a system means to find the x- and y-values for which both of the equations are true. Systems of linear equations can be solved using a variety of methods. One method is to graph the equations as two lines and examine them. If the lines intersect at exactly one point, there is one solution to the system, and the system is called consistent. If the two lines are on top of one another, there are an infinite number of solutions, because each point on the line is considered a solution (this system is called dependent). If the two lines are parallel, there is no solution (this system is called inconsistent).
squared
They both have variables. They both have addition, subtraction, multiplication, and division.
The circulatory and lymphatic systems both have the spleen in common. The muscular and skeletal systems share the bones as organs. The respiratory and digestive systems both have the mouth as a common organ.
They both can be made by humans and they both can be natural.
Suppose we have two linear equations in two unknowns. If the equations are plotted on a rectangular grid, the graph will fit one of these scenarios: 1) The two lines cross each other (intersect). 2) The two lines don't cross - they are parallel lines 3) The two lines fall on top of each other - they're really the same line. In case 3) the two lines are dependent - one can be changed into the other. In cases 1) and 2) we say the lines are independent. If the pair of equations has a solution (one or more points in common) we say they are consistent ... cases 1) and 3). In case 2) the system is inconsistent; there is no solution. To summarize: 1) Intersecting lines are consistent and independent. 2) Parallel lines are inconsistent and independent. 3) Coincident ["happen together"] lines are consistent and dependent. *** A second order linear system CANNOT be both dependent and inconsistent.
they are bother variable and they both make-up a graph or table
That doesn't apply to "an" equation, but to a set of equations (2 or more). Two equations are:* Inconsistent, if they have no common solution (a set of values, for the variables, that satisfies ALL the equations in the set). * Consistent, if they do. * Dependent, if one equation can be derived from the others. In this case, this equation doesn't provide any extra information. As a simple example, one equation is the same as another equation, multiplying both sides by a constant. * Independent, if this is not the case.
they are both operating systems
They are both used in the suspension systems of vehicles.
The pharynx (and the glottis flap) in the throat are used by both systems, i.e. to swallow food and to breathe.
both have writting systems and arose along rivers
They both require mechanical and chemical digestion.
both have writting systems and arose along rivers
The system is inconsistent because there is no solution, i.e., no ordered pair, that satisfies both equations. You can see that this will be the case by seeing that their graphs have the same slope (2) but different y-intercepts (2 and 3/4 respectively). So the lines are parallel and will not intersect.